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Readings
● Neutral networks chapters in J&M 3: 

○ https://web.stanford.edu/~jurafsky/slp3/7.pdf
○ https://web.stanford.edu/~jurafsky/slp3/8.pdf
○ https://web.stanford.edu/~jurafsky/slp3/9.pdf

● Hundreds of blog posts and tutorials

● The Annotated Transformer 
https://nlp.seas.harvard.edu/2018/04/03/attention.html
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We'll discuss 2 kinds of embeddings
● tf-idf 

○ Information Retrieval workhorse!
○ A common baseline model
○ Sparse vectors
○ Words are represented by (a simple function of) the counts of nearby words

● Word2vec
○ Dense vectors
○ Representation is created by training a classifier to predict whether a word is likely to 

appear nearby
○ https://fasttext.cc/docs/en/crawl-vectors.html
○ Later we'll discuss extensions called contextual embeddings
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This is in your brain
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Neural Network Unit (this is not in your brain)
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Neural unit
● Take weighted sum of inputs, plus a bias

● Instead of just using z, we’ll apply a nonlinear activation function f:
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Non-Linear Activation Functions
● We've already seen the sigmoid for logistic regression:
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Final function the unit is computing
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Binary Logistic Regression as a 1-layer network
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Non-Linear Activation Functions besides sigmoid
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Final unit again
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Feedforward Neural Networks
● Can also be called multi-layer perceptrons (or MLPs) for historical reasons

○ (we don't count the input layer in counting layers!)
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Multinomial Logistic Regression as a 1-layer Network
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softmax: a generalization of sigmoid

● For a vector z of dimensionality k, the softmax is:
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Two-Layer Network with softmax output
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Replacing the bias unit

16



Undergrad NLP 2022Yulia Tsvetkov

Learning the weights
● Cross-entropy loss
● Backpropagation algorithm
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Applying neural networks to NLP tasks
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Use cases for feedforward networks
● Word representations
● Text classification
● Language modeling

State of the art systems use more powerful neural architectures (we will learn 
transformers architectures on Friday), but simpler models are useful to consider! 
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Word Vectors

Distributed representations
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Sparse versus dense vectors
tf-idf (or PMI) vectors are

● long (length |V|= 20,000 to 50,000)
● sparse (most elements are zero) 

Alternative: learn vectors which are

● short (length 50-1000)
● dense (most elements are non-zero)
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Sparse versus dense vectors
Why dense vectors?

● Short vectors may be easier to use as features in machine learning (fewer 
weights to tune)

● Dense vectors may generalize better than explicit counts
● Dense vectors may do better at capturing synonymy: 

○ car and automobile are synonyms; but are distinct dimensions
○ a word with car as a neighbor and a word with automobile as a neighbor should be 

similar, but aren't 
● In practice, they work better
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Common methods for getting short dense vectors

● In count-based models - Singular Value Decomposition (SVD)
○ A special case of this is called LSA – Latent Semantic Analysis 

● “Neural Language Model”-inspired models
○ The weight matrix in the input layer is often used as “word embeddings” 
○ Compute one embeddings for each word (word types) 

● Alternative to these "static embeddings":
○ Contextual Embeddings (ELMo, BERT)
○ Compute distinct embeddings for a word in its context
○ Separate embeddings for each token of a word

23



Undergrad NLP 2022Yulia Tsvetkov

Simple static embeddings you can download! 

word2vec (Mikolov et al) 

https://code.google.com/archive/p/word2vec/ 

GloVe (Pennington, Socher, Manning) 

http://nlp.stanford.edu/projects/glove/
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“One hot” vectors and dense word vectors (embeddings)
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Low-dimensional word representations
● Learning representations by back-propagating errors 

○ Rumelhart, Hinton & Williams, 1986
●  A neural probabilistic language model

○ Bengio et al., 2003
● Natural Language Processing (almost) from scratch

○ Collobert & Weston, 2008
● Word representations: A simple and general method for semi-supervised 

learning
○ Turian et al., 2010

● Distributed Representations of Words and Phrases and their Compositionality
○ Word2Vec; Mikolov et al., 2013
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word2vec
● Popular embedding method
● Very fast to train
● Code available on the web
● Idea: predict rather than count
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word2vec
● Instead of counting how often each word w occurs near "apricot"

○ Train a classifier on a binary prediction task: 
■ Is w likely to show up near "apricot"?

● We don’t actually care about this task
○ But we'll take the learned classifier weights as the word embeddings

● Big idea: self-supervision:
○ A word c that occurs near apricot in the corpus cats as the gold "correct
○ answer" for supervised learning
○ No need for human labels
○ Bengio et al. (2003); Collobert et al. (2011) 
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word2Vec

● [Mikolov et al.’ 13]
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Skip-gram Prediction
● Predict vs Count

the cat sat on the mat
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● Predict vs Count

Skip-gram Prediction

the cat sat on the mat
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the cat sat on the mat
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Skip-gram Prediction
● Conceptual idea, not the actual architecture
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How to compute p(+|t,c)?
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Approach: predict if candidate word c is a “neighbor”

1. Treat the target word t and a neighboring context word c as positive examples

2. Randomly sample other words in the lexicon to get negative examples

3. Use logistic regression to train a classifier to distinguish those two cases

4. Use the learned weights as the embeddings
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FastText

41



Undergrad NLP 2022Yulia Tsvetkov

SGNS
Given a tuple (t,c)  = target, context

● (cat, sat)
● (cat, aardvark)

Return probability that c is a real context word:
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Learning the classifier
● Iterative process

○ We’ll start with 0 or random weights
○ Then adjust the word weights to

■ make the positive pairs more likely 
■ and the negative pairs less likely

○ over the entire training set:

● Train using gradient descent
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BERT

https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
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Properties of Embeddings
The kinds of neighbors depend on window size

● Small windows (C= +/- 2) : nearest words are syntactically similar words in same 
taxonomy
○ Hogwarts nearest neighbors are other fictional schools
○ Sunnydale, Evernight, Blandings

● Large windows (C= +/- 5) : nearest words are related 
○ Hogwarts nearest neighbors are Harry Potter world: 
○ Dumbledore, half-blood, Malfoy
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Analogical relations
The classic parallelogram model of analogical reasoning (Rumelhart and 
Abrahamson 1973)

To solve: “apple is to tree as grape is to _________”

Add tree – apple to grape to get vine
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Analogical relations via parallelogram
The parallelogram method can solve analogies with both sparse and dense  
embeddings (Turney and Littman 2005, Mikolov et al. 2013b)
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Embeddings as a window onto historical semantics

Train embeddings on different decades of historical text to see meanings shift

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change. 
Proceedings of ACL.
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Embeddings reflect cultural bias!
● Ask “Paris : France :: Tokyo : x” 

○ x = Japan
● Ask “father : doctor :: mother : x”

○ x = nurse
● Ask “man : computer programmer :: woman : x” 

○ x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer programmer as woman is 
to homemaker? debiasing word embeddings." In NeurIPS, pp. 4349-4357. 2016

Algorithms that use embeddings as part of e.g., hiring searches for programmers, 
might lead to bias in hiring
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Use cases for feedforward networks
● Word representations
● Text classification
● Language modeling

State of the art systems use more powerful neural architectures (we will learn 
transformers architectures on Monday), but simple models are useful to consider! 
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Neural LMs

Image: (Bengio et al, 03)
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Neural LMs

(Bengio et al, 03)
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Recurrent LMs

53

</s>I saw a 

</s>

    cat

I saw a cat



Undergrad NLP 2022Yulia Tsvetkov

Recurrent LMs
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Sequence-to-Sequence Models 

Ilya Sutskever, Oriol Vinyals, Quoc V. Le. 2014. Sequence to 
Sequence Learning with Neural Networks. Proc. NIPS

Я  увидела кОшку

I saw a 

<EOS>

cat <EOS>
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Sequence-to-Sequence Models for Neural Machine Translation 

Ilya Sutskever, Oriol Vinyals, Quoc V. Le. 2014. Sequence to Sequence Learning with Neural 
Networks. Proc. NIPS
Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, Yoshua Bengio. 2014. On the 
Properties of Neural Machine Translation: Encoder-Decoder Approaches. Proc. SSST

Я  увидела кОшку

I saw a 

<EOS>

cat <EOS>

ENCODER

DECODER
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Sequence-to-Sequence Models for NMT 

Я  увидела кОшку

I saw a 

<EOS>

cat <EOS>

sentence 
representation

57



Undergrad NLP 2022Yulia Tsvetkov

Encoder: Bidirectional RNN
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Encoder: Bidirectional RNN
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Encoder: Bidirectional RNN
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Encoder: Bidirectional RNN
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Encoder: Bidirectional RNN
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Encoder: Bidirectional RNN
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Encoder: Bidirectional RNN
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Matrix Sentence Encoding 
●  matrix-encoded sentence
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Decoder: RNN + Attention
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