

Natural Language Processing **CSE 447 @ UW** In-Context Learning, Prompting, and Basics of Reasoning

Guest Lecturer: Chan Young Park

Some slides adapted from: Charlie Dickens

CSE 447: Natural Language Processing, Fall 2024

TA7 UNIVERSITY of WASHINGTON

★ Basics of Prompting In-Context Learning **★** More Strategic Prompting Chain-of-Thought Reasoning (and More) **★** Advanced Prompting & Basics of Reasoning Knowledge Enhanced Reasoning & Dialog Think-Before-Speaking Agent & Tool Use

CSE 447: Natural Language Processing, Fall 2024

Preference Elicitation with Clarification Questions

Advanced Prompting & Basics of Reasoning: **Knowledge Enhanced Reasoning & Dialog Think-Before-Speaking** Agent & Tool Use **Preference Elicitation with Clarification Questions**

CSE 447: Natural Language Processing, Fall 2024

STaR: Self-Taught Reasoner (STaR, Zelikman et al. 2022) **Bootstrapping Reasoning With Reasoning**

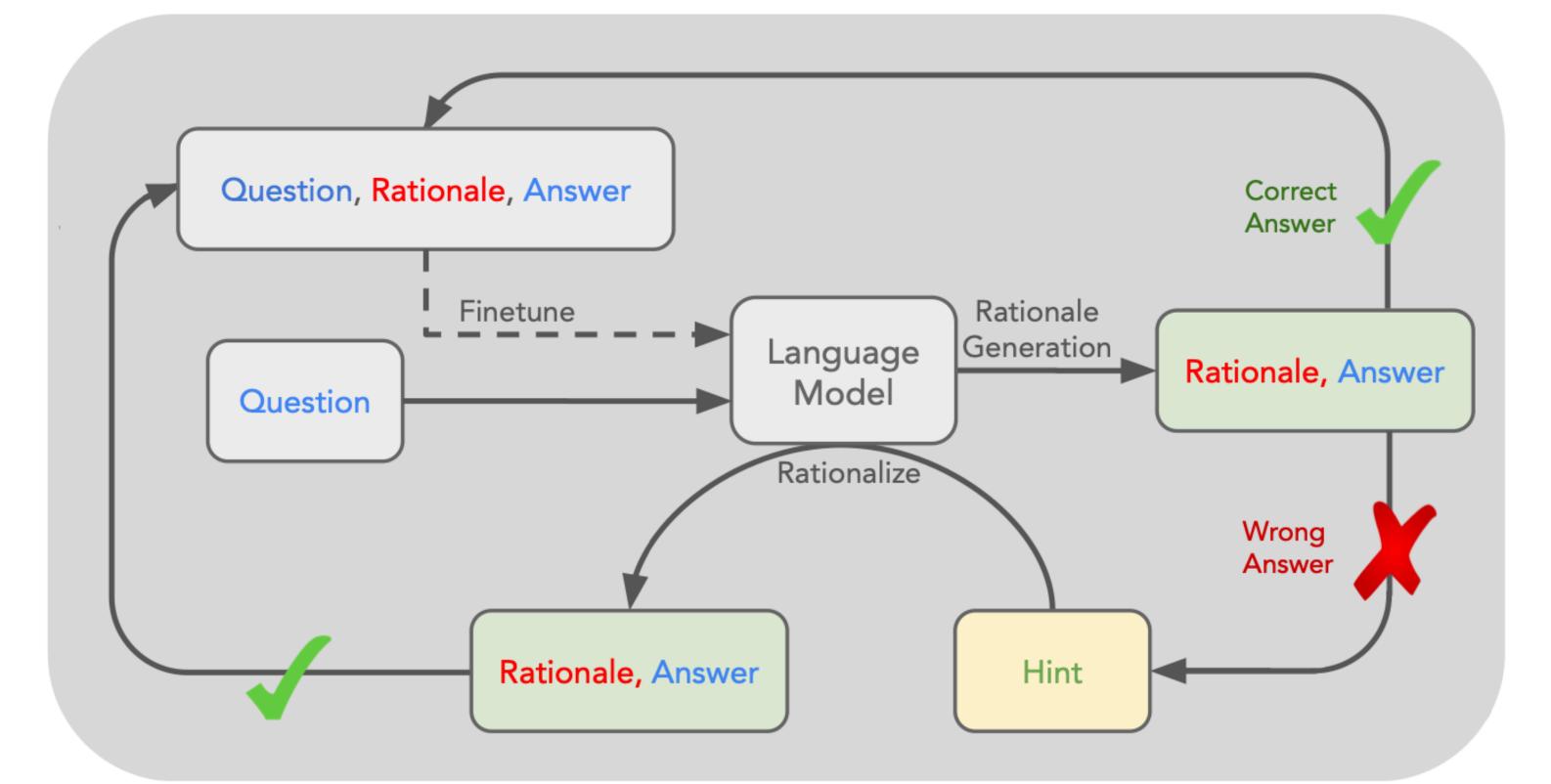
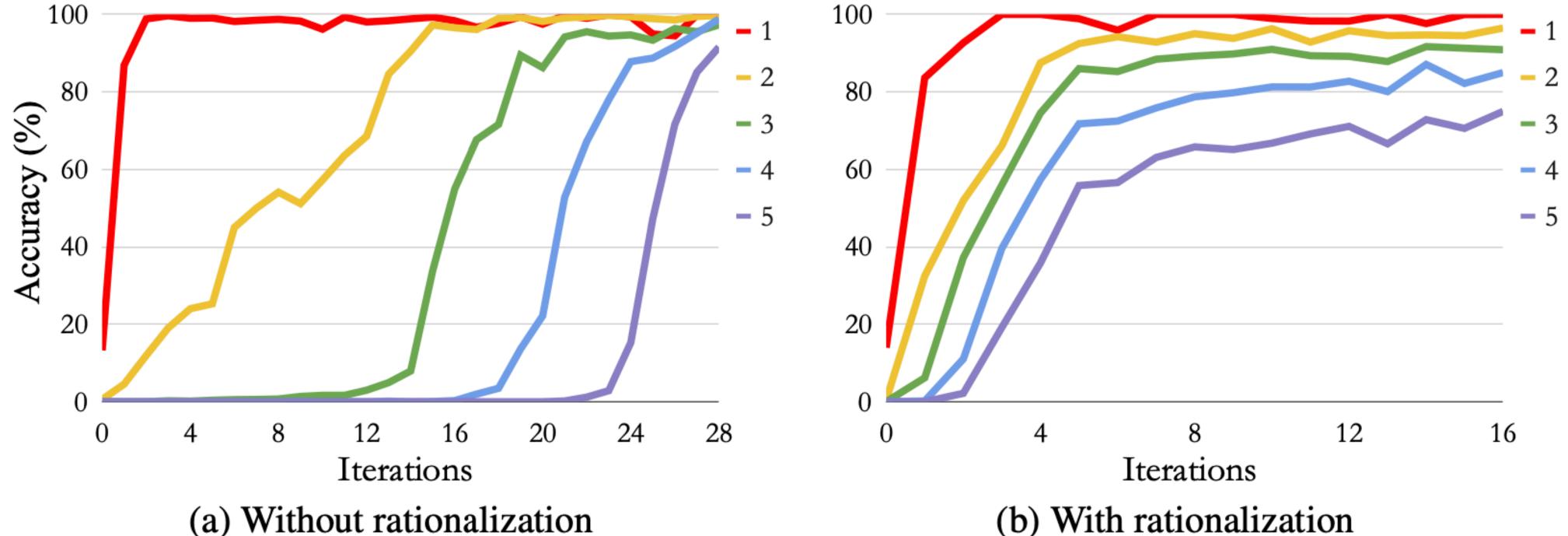


Figure 1: An overview of STaR and a STaR-generated rationale on CommonsenseQA. We indicate the fine-tuning outer loop with a dashed line. The questions and ground truth answers are expected to be present in the dataset, while the rationales are generated using STaR.

CSE 447: Natural Language Processing, Fall 2024

Q: What can be used to carry a small dog? Answer Choices: (a) swimming pool (b) basket (c) dog show (d) backyard (e) own home A: The answer must be something that can be used to carry a small dog. Baskets are designed to hold things. Therefore, the answer is basket (b).

STaR: Self-Taught Reasoner (STaR, Zelikman et al. 2022) **Bootstrapping Reasoning With Reasoning**



(a) Without rationalization

Figure 4: A visualization of the accuracy of *n*-digit summation with each iteration of STaR with and without rationalization for arithmetic. Each series corresponds to the accuracy of summing two *n*-digit numbers.

Quiet-STaR: Language Models Can Teach Themselves to Think Before Speaking

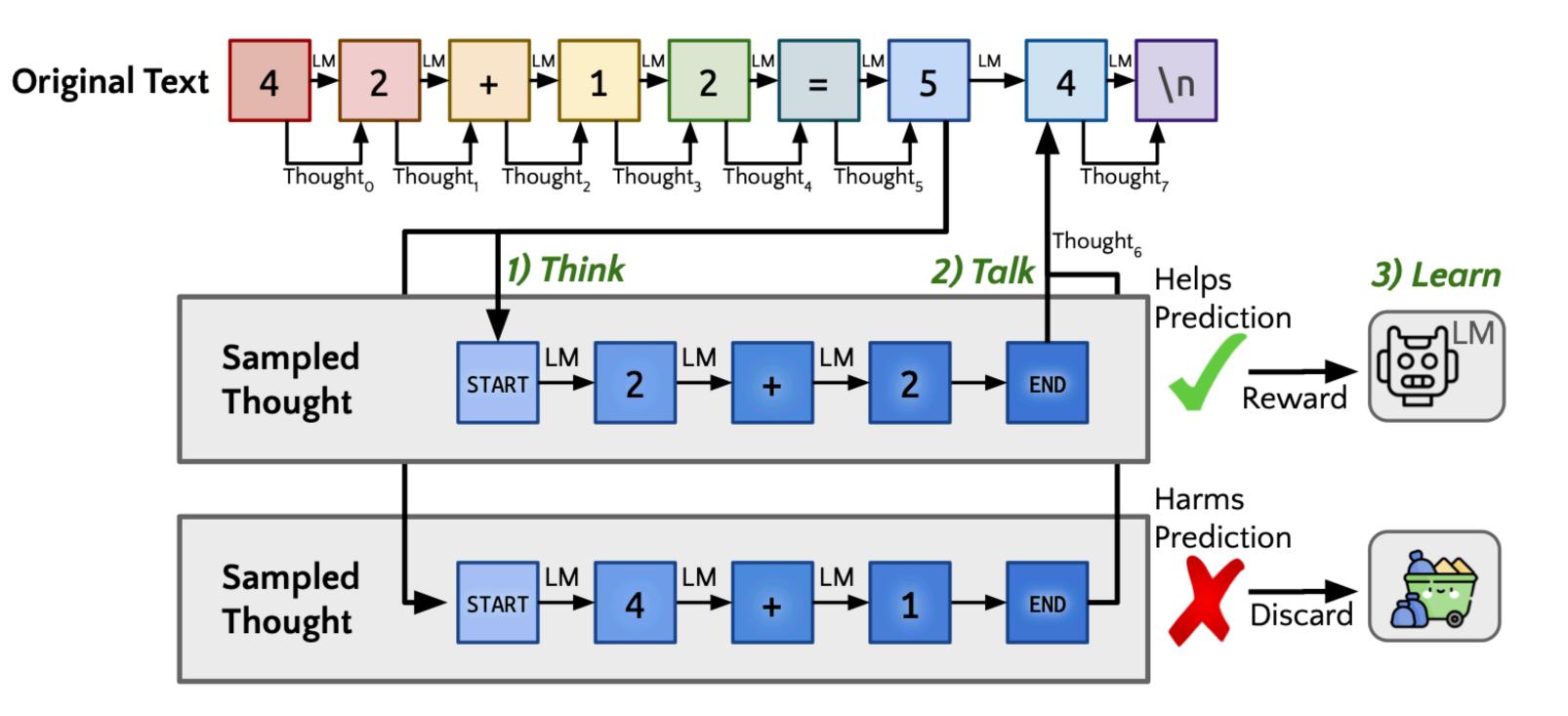
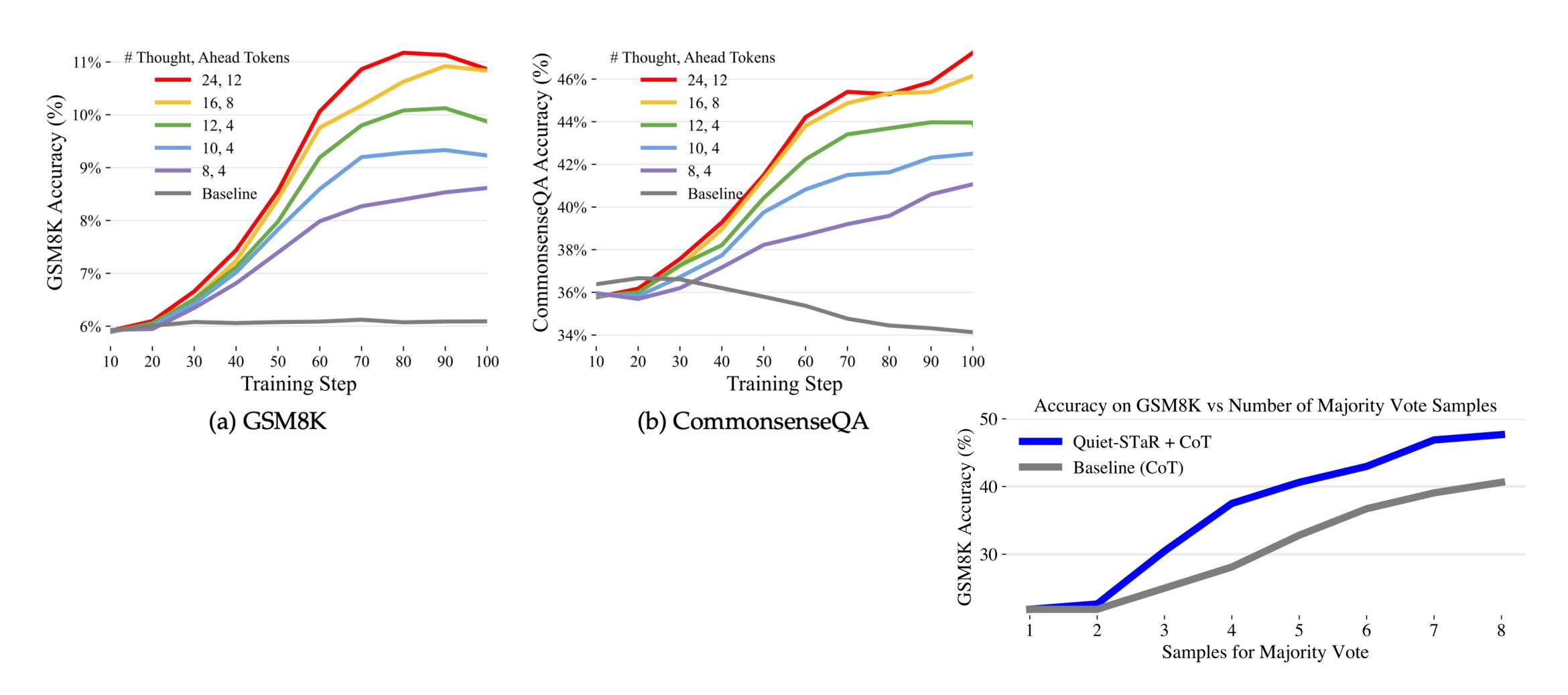


Figure 1: **Quiet-STaR**. We visualize the algorithm as applied during training to a single thought. We generate thoughts, in parallel, following all tokens in the text (think). The model produces a mixture of its next-token predictions with and without a thought (talk). We apply REINFORCE, as in STaR, to increase the likelihood of thoughts that help the model predict future text while discarding thoughts that make the future text less likely (learn).

CSE 447: Natural Language Processing, Fall 2024

(Quiet-STaR, Zelikman et al. 2024) **Quiet-STaR:** Language Models Can Teach Themselves to Think Before Speaking

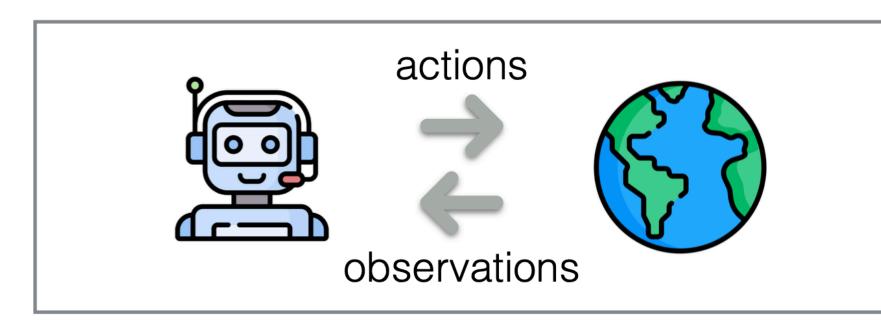


CSE 447: Natural Language Processing, Fall 2024

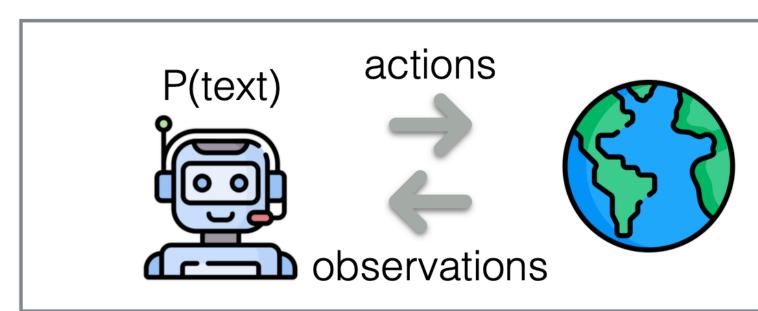
What are LLM-Powered Agents?

Language models predict text

Al agents iteratively perform actions in the world



LM agents are an agent with a an LM backbone



CSE 447: Natural Language Processing, Fall 2024

Minimal Components of LLM Agents:

- Underlying LLM
- Prompt
- Action/Observation Space

Things that LLMs Are Bad At...

Numerical/symbolic operations

- Calculation
- Logic deduction 2.
- 3. Exact operations

Knowledge not in their pre-training corpus

- Tail factual knowledge 1.
- New information 2.
- 3. Private information

Interaction with the external world

- Non natural language interfaces 1.
- 2. Physical world
- Environmental information (e.g., time) 3.

CSE 447: Natural Language Processing, Fall 2024

To aid LLMs on tasks beyond their ability: knowledge, symbolic, and external environment operations

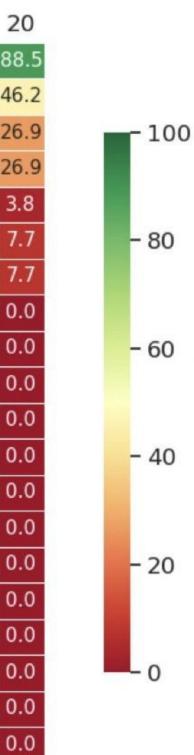
Why Tools?

LLMs are not the solution for everything. (Not AGI yet. Surprise?)

		Accuracy of o1-mini																		
	1	2	3	4	5	6	7	Di 8	gits 9	in 1 10	Num 11	12	1 13	14	15	16	17	18	19	2
Ч	100	100	100	100	96.2	100	96.2	100	96.2	100	92.3	100	88.5	92.3	96.2	88.5	92.3	80.8	92.3	8
2	100	100	100	100	100	100	100	96.2	100	92.3	100	84.6	69.2	76.9	80.8	69.2	65.4	80.8	80.8	46
m	100	100	100	92.3	96.2	92.3	100	100	88.5	84.6	76.9	84.6	73.1	57.7	57.7	65.4	53.8	34.6	42.3	26
4	100	100	100	100	100	100	92.3	92.3	88.5	92.3	84.6	73.1	53.8	42.3	50.0	46.2	46.2	30.8	11.5	26
S	100	100	100	92.3	96.2	92.3	88.5	76.9	76.9	69.2	57.7	38.5	65.4	61.5	34.6	23.1	26.9	30.8	7.7	3
9	96.2	96.2	92.3	100	92.3	84.6	69.2	73.1	61.5	57.7	61.5	46.2	19.2	15.4	15.4	23.1	11.5	0.0	15.4	7
	96.2	100	92.3	100	80.8	76.9	61.5	73.1	50.0	57.7	46.2	46.2	26.9	11.5	11.5	7.7	3.8	11.5	3.8	7
er 2 8	96.2	100	88.5	92.3	84.6	69.2	65.4	61.5	57.7	61.5	34.6	26.9	7.7	23.1	3.8	0.0	3.8	0.0	3.8	0
Number 10 9 8	100	100	100	80.8	57.7	57.7	50.0	50.0	53.8	19.2	34.6	19.2	3.8	3.8	3.8	0.0	15.4	0.0	0.0	0
10 I	96.2	96.2	96.2	80.8	73.1	50.0	30.8	34.6	19.2	3.8	0.0	7.7	0.0	3.8	0.0	0.0	0.0	0.0	0.0	0
in N 11		96.2	84.6	73.1	57.7	42.3	23.1	26.9	11.5	3.8	7.7	7.7	3.8	3.8	0.0	0.0	0.0	0.0	0.0	0
ts i 12	92.3	92.3	69.2	69.2	50.0	23.1	3.8	7.7	15.4	11.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
Digits	88.5	80.8	84.6	57.7	42.3	26.9	7.7	0.0	3.8	7.7	3.8	0.0	3.8	0.0	0.0	0.0	0.0	0.0	0.0	0
14 D	84.6	76.9	73.1	65.4	38.5	11.5	3.8	3.8	3.8	0.0	0.0	0.0	3.8	0.0	0.0	0.0	0.0	0.0	0.0	0
15	96.2	84.6	73.1	34.6	7.7	26.9	3.8	3.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
16		76.9	57.7	23.1	19.2	7.7	7.7	3.8	3.8	0.0	0.0	0.0	0.0	0.0	3.8	0.0	0.0	0.0	0.0	0
17		88.5	65.4	38.5	23.1	11.5	11.5	3.8	3.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
18		69.2	53.8	30.8	11.5	19.2	3.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
19		61.5	34.6	15.4	3.8	3.8	3.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
20		61.5	26.9	23.1	3.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0

Multiplication Accuracy of OpenAI O1 (Yuantian Deng, X)

CSE 447: Natural Language Processing, Fall 2024



(%)

Accuracy

O1 cannot solve multiplications of **10+ digits...**

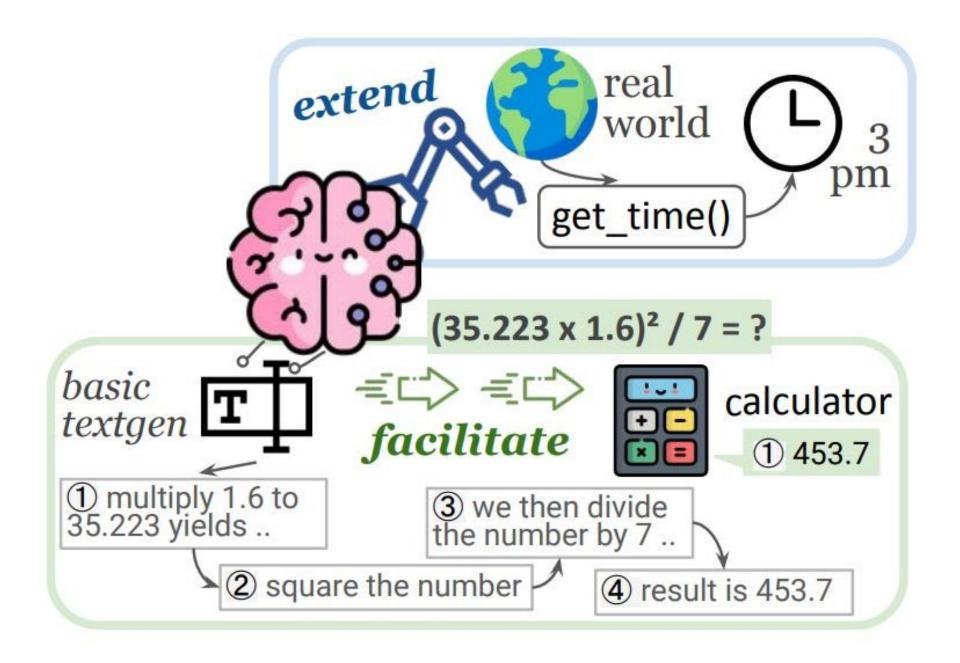
But why should we expect LLMs to do so?

Humans cannot do this on-the-fly either... but we can use calculator to solve it easily.

Can LLMs use tools too?

What are Tools?

Definition: An LM-used tool is a function interface to a computer program that runs externally to the LM, where the LM generates the function calls and input arguments in order to use the tool.



CSE 447: Natural Language Processing, Fall 2024

A tool is:

- A Computer Program
- External to the LM
- Used through generated function calls

What are Tools?

Category	
I Knowledge access	sql_execut search_eng retriever
Computation activities	calculato python_int worksheet
Solution W/ the world	get_weathe get_locati calendar. email.ver
Non-textual modalities	cat_image spotify.p visual_qa
(Special-skilled LMs	QA(questi translati

CSE 447: Natural Language Processing, Fall 2024

Example Tools

tor(query: str) -> answer: any gine(query: str) -> document: str (query: str) -> document: str

or(formula: str) -> value: int | float terpreter(program: str) -> result: any .insert_row(row: list, index: int) -> None

er(city_name: str) -> weather: str ion(ip: str) -> location: str fetch_events(date: str) -> events: list rify(address: str) -> result: bool

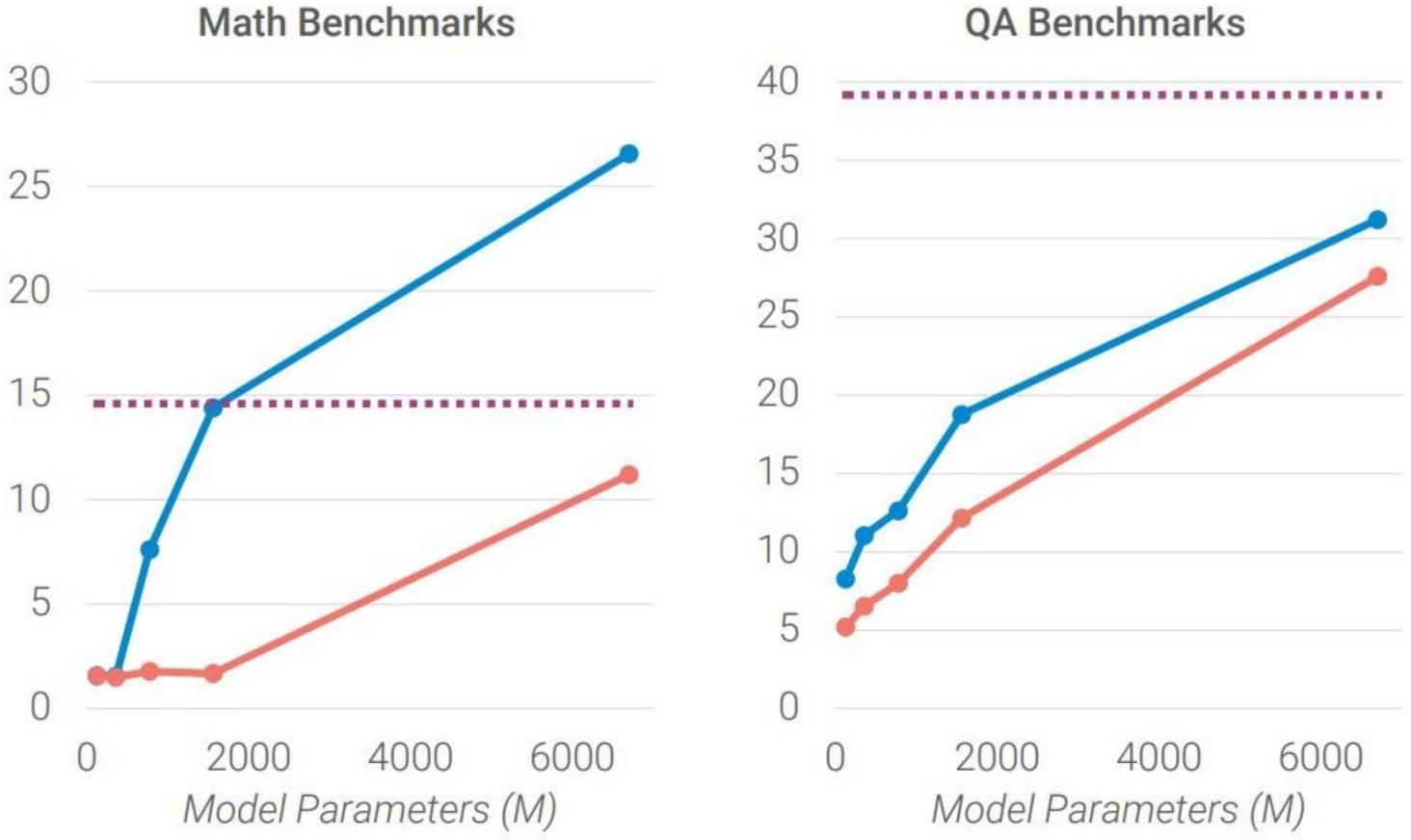
.delete(image_id: str) -> None olay_music(name: str) -> None (query: str, image: Image) -> answer: str

on: str) -> answer: str on(text: str, language: str) -> text: str

Tool Use & Agent

- Agent Definition
 - Disagreement on what "agent" or "agentic" means
- Requirements:
 - Probably: Proactive use of tools
 - Probably: An iterative, multi-step process
 - Maybe: Interaction with the outside world

Tool Usage Performance

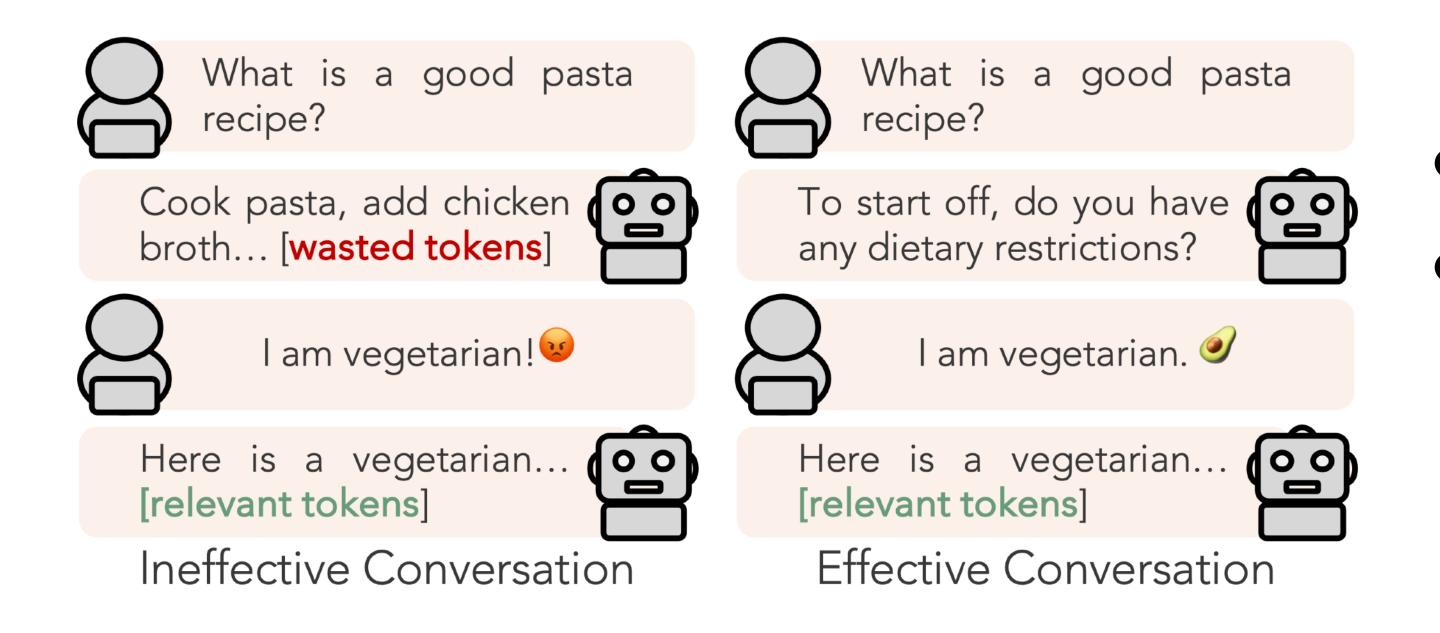


Significantly Improving GPT's Performances

(Toolformer, Snihck et al. 2023)

CSE 447: Natural Language Processing, Fall 2024

Can Models Ask Clarification Questions?



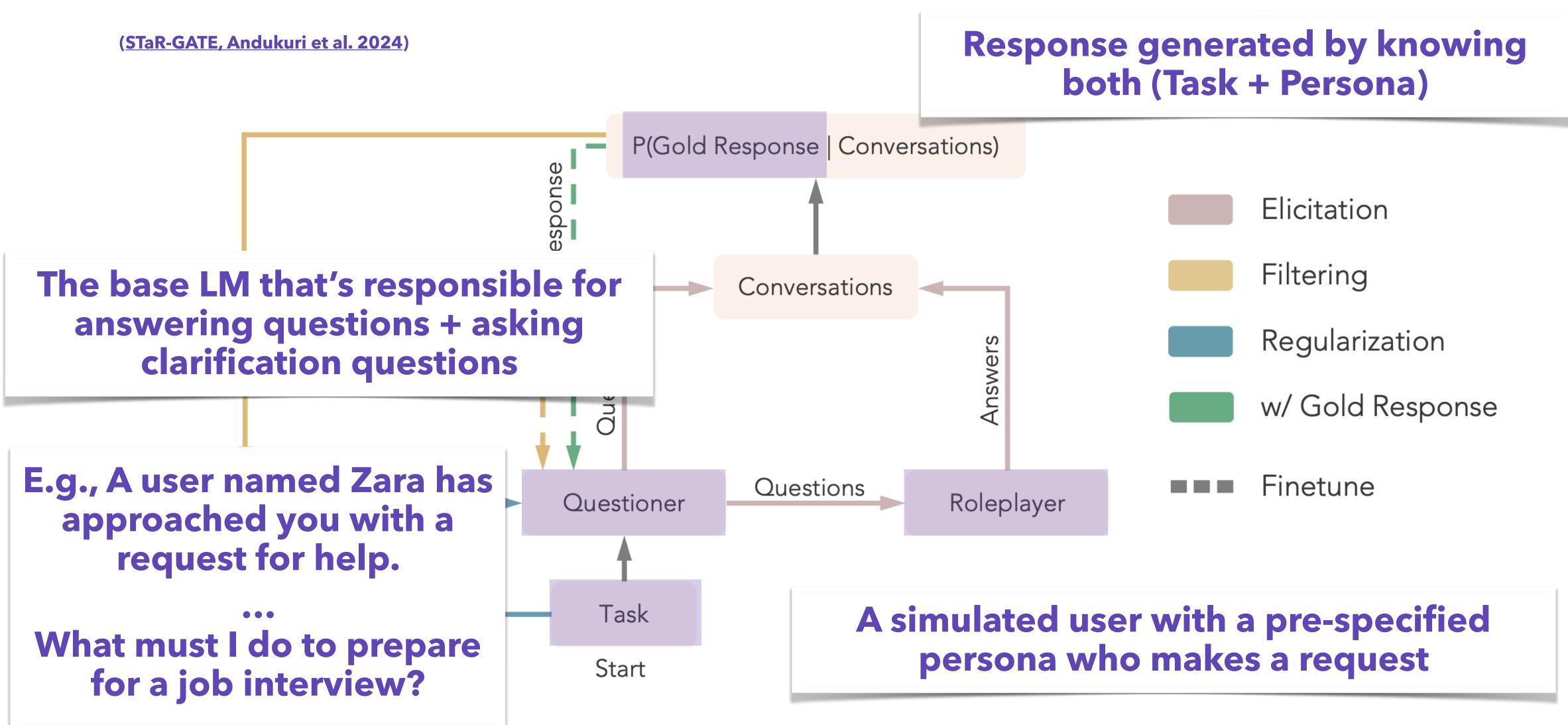
CSE 447: Natural Language Processing, Fall 2024

Similar to humans, but LMs (as-is) don't complain when the instructions are unclear

Task ambiguity

• Teaching the model to ask questions that best elicit a particular user's preferences

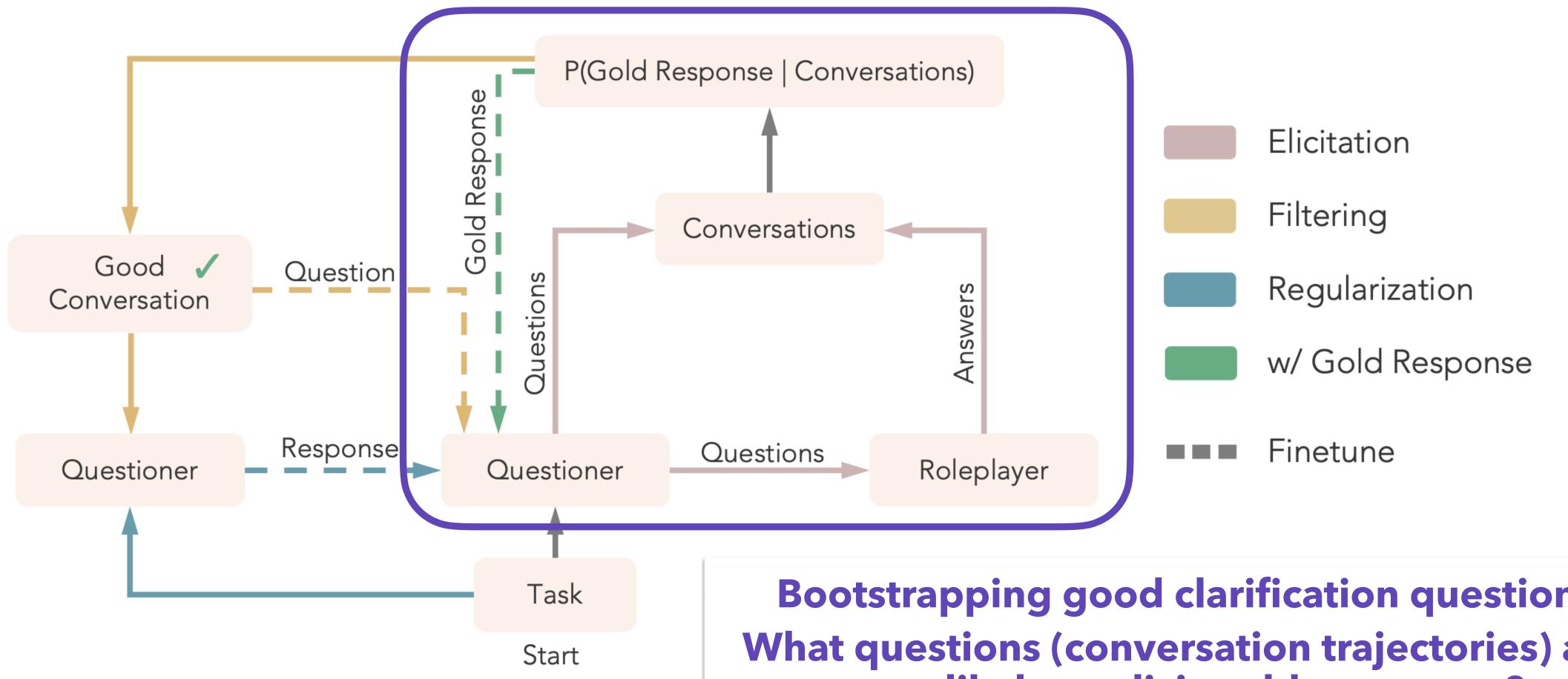
(STaR-GATE, Andukuri et al. 2024)



CSE 447: Natural Language Processing, Fall 2024

STaR-GATE

(STaR-GATE, Andukuri et al. 2024)

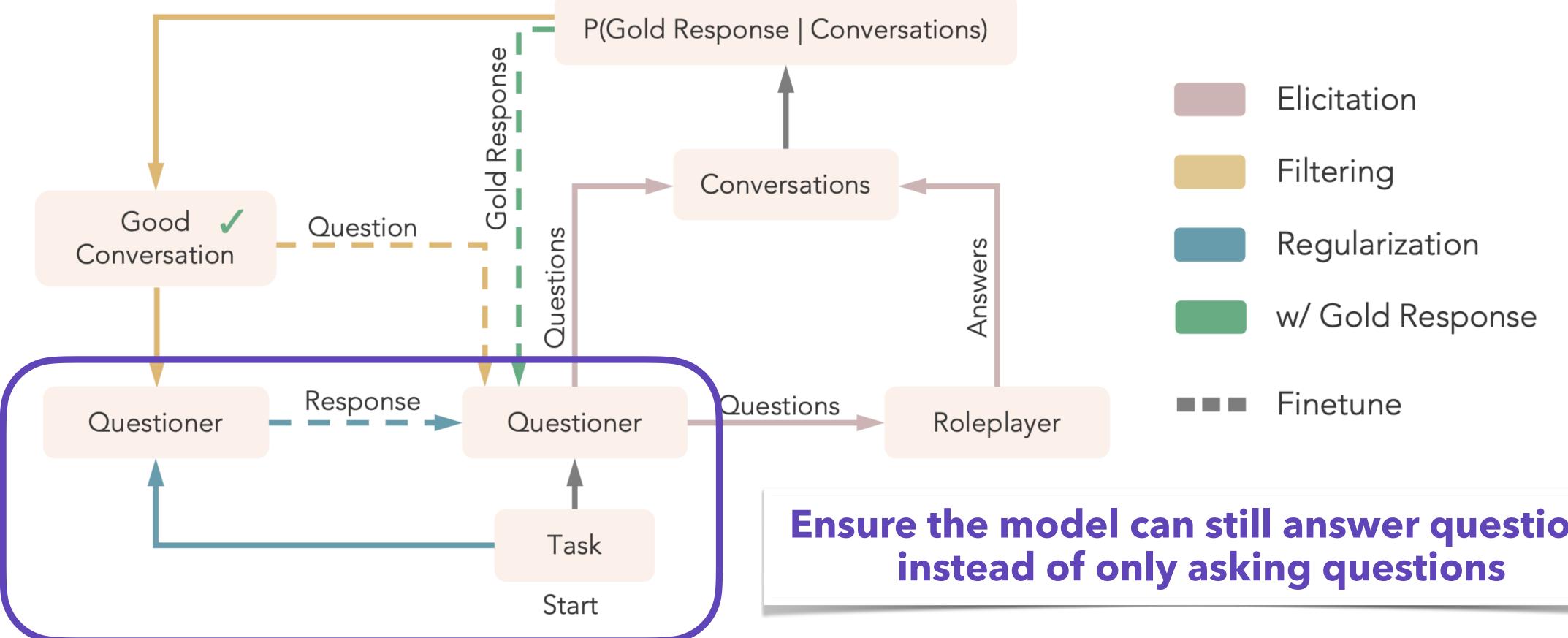


CSE 447: Natural Language Processing, Fall 2024

Bootstrapping good clarification question. What questions (conversation trajectories) are most likely to elicit gold responses?

STaR-GATE

(STaR-GATE, Andukuri et al. 2024)

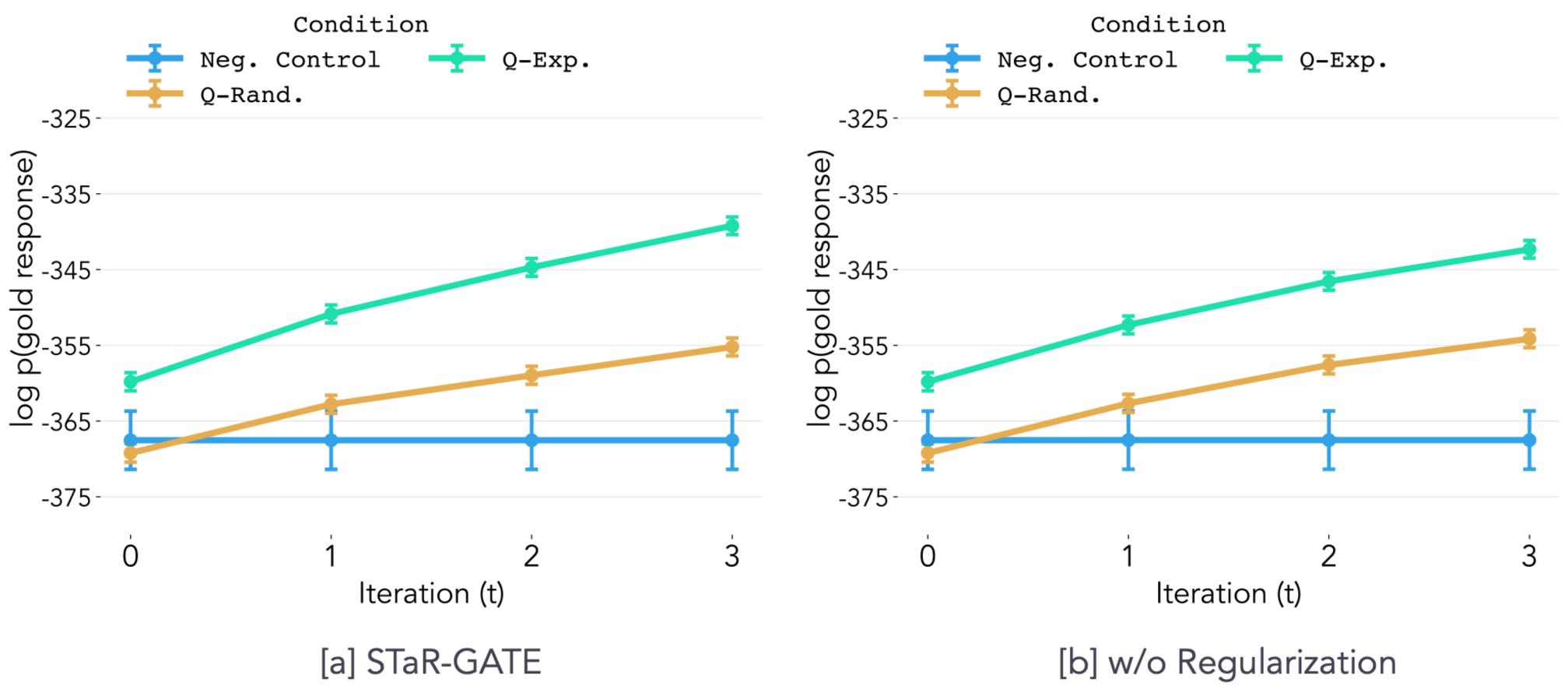


CSE 447: Natural Language Processing, Fall 2024

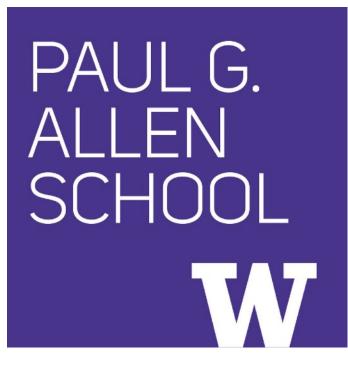
Ensure the model can still answer questions

Can Models Ask Clarification Questions?

(STaR-GATE, Andukuri et al. 2024)



CSE 447: Natural Language Processing, Fall 2024



Natural Language Processing **CSE 447 @ UW**

Knowledge Distillation

Guest Lecturer: Chan Young Park Some slides adapted from: Charlie Dickens

CSE 447: Natural Language Processing, Fall 2024

TA7 UNIVERSITY of WASHINGTON

★ Basics of Knowledge Distillation Definition and Steps **★** Types of Knowledge Distillation **★** Advanced Knowledge Distillation Impossible Distillation

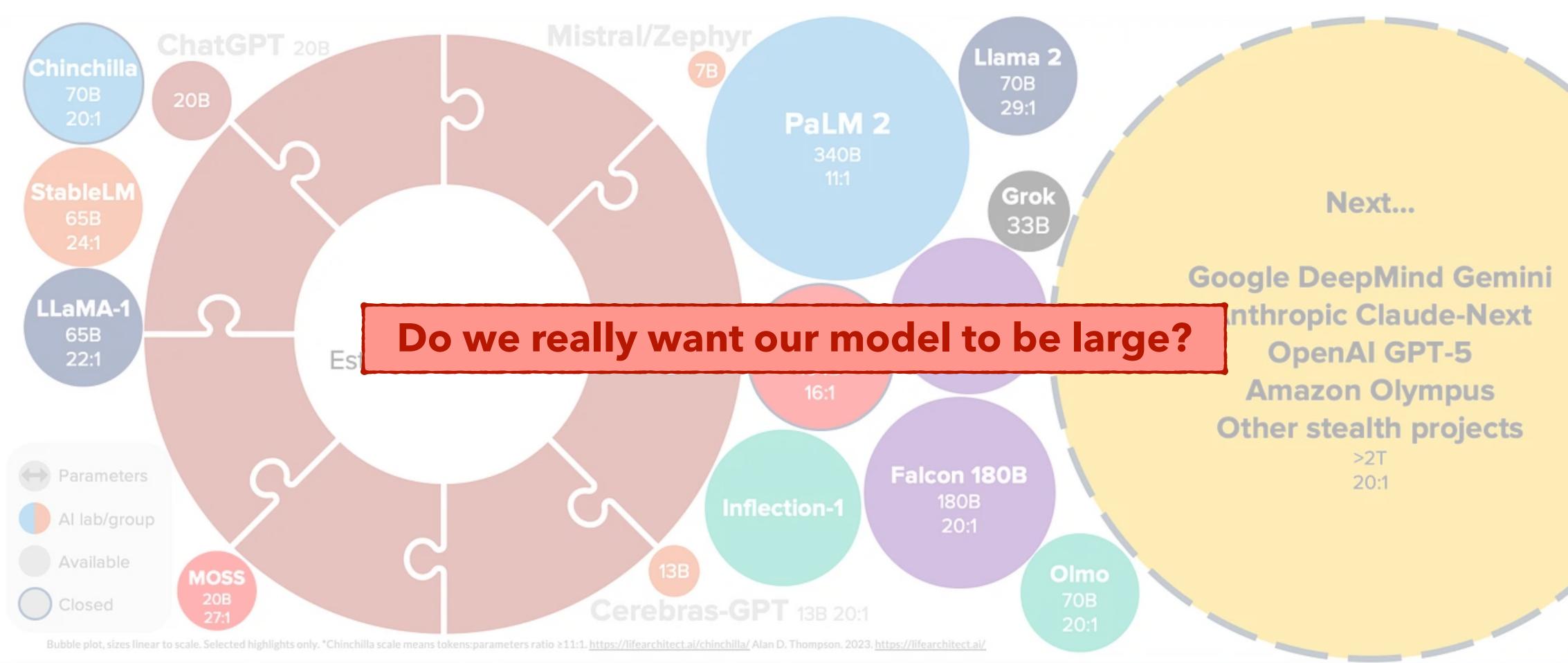
CSE 447: Natural Language Processing, Fall 2024

Labels, Representations, Synthetic Data, Feedback

Basics of Knowledge Distillation: **Definition and Steps**

CSE 447: Natural Language Processing, Fall 2024

Why Distillation?



Natural Language Processing - CSE 517 / CSE 447

Size-Cost Trade-Off

Better Generalizability Better Performance

Natural Language Processing - CSE 517 / CSE 447

Higher Latency Higher Inference Cost

Bigger models are not always desirable

Ideally...

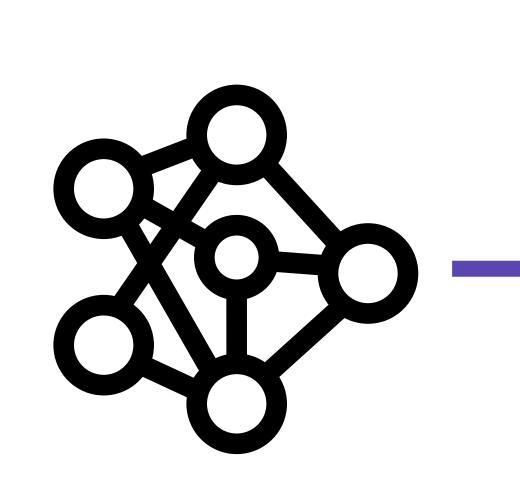
Fast response (low latency)

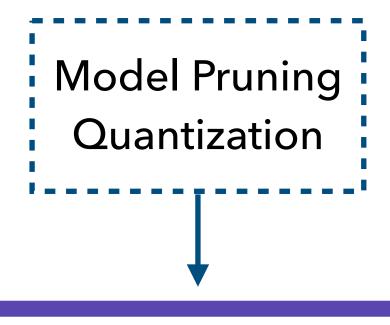
While retaining similar performance as large models!

Natural Language Processing - CSE 517 / CSE 447

What we can do

Transform large models into smaller ones!

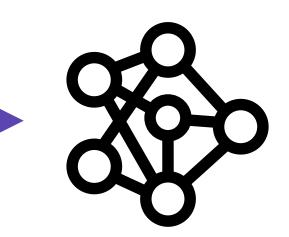




Natural Language Processing - CSE 517 / CSE 447

Low inference costs

Fast response (low latency)



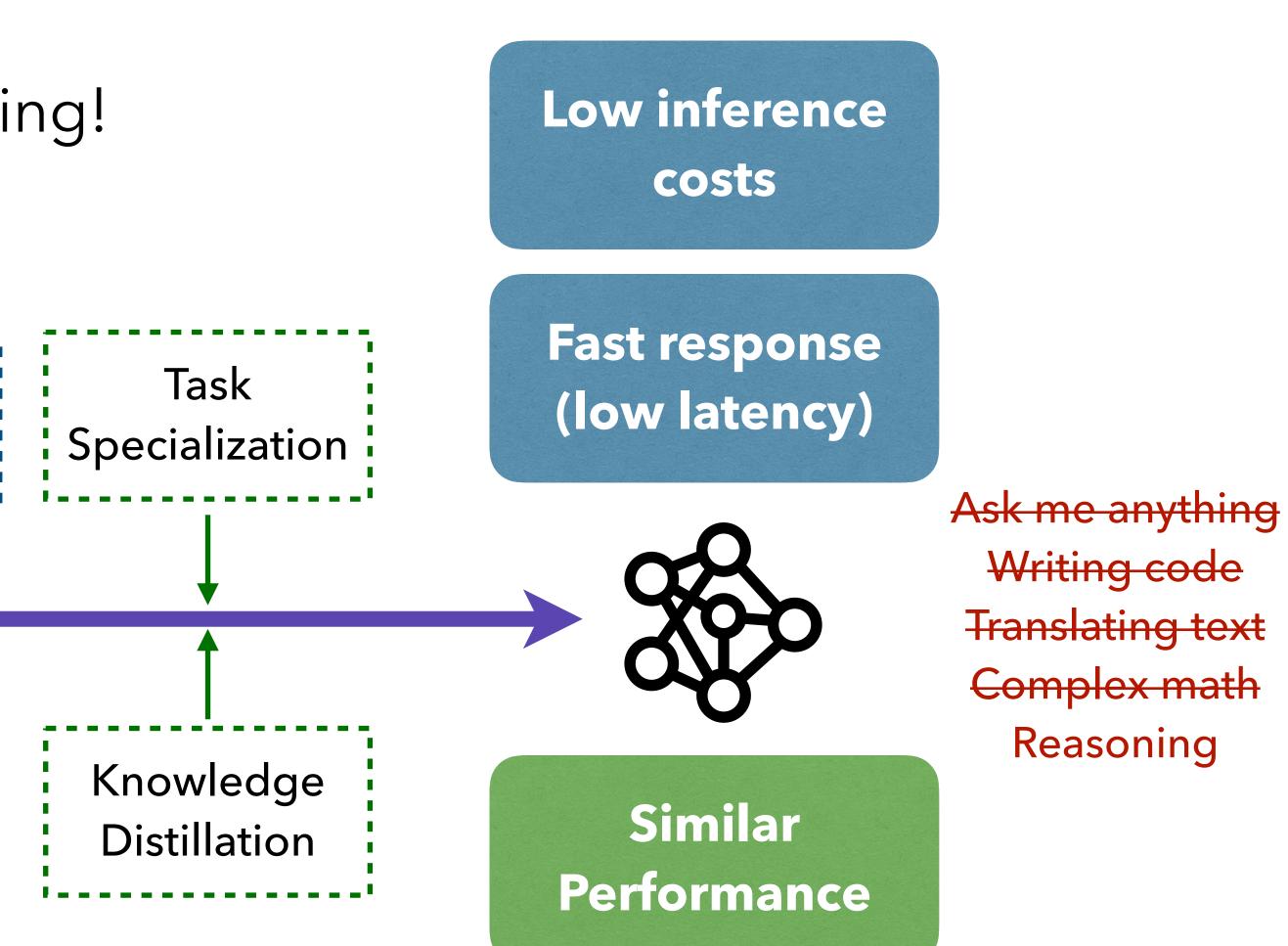
Similar Performance

What we can do

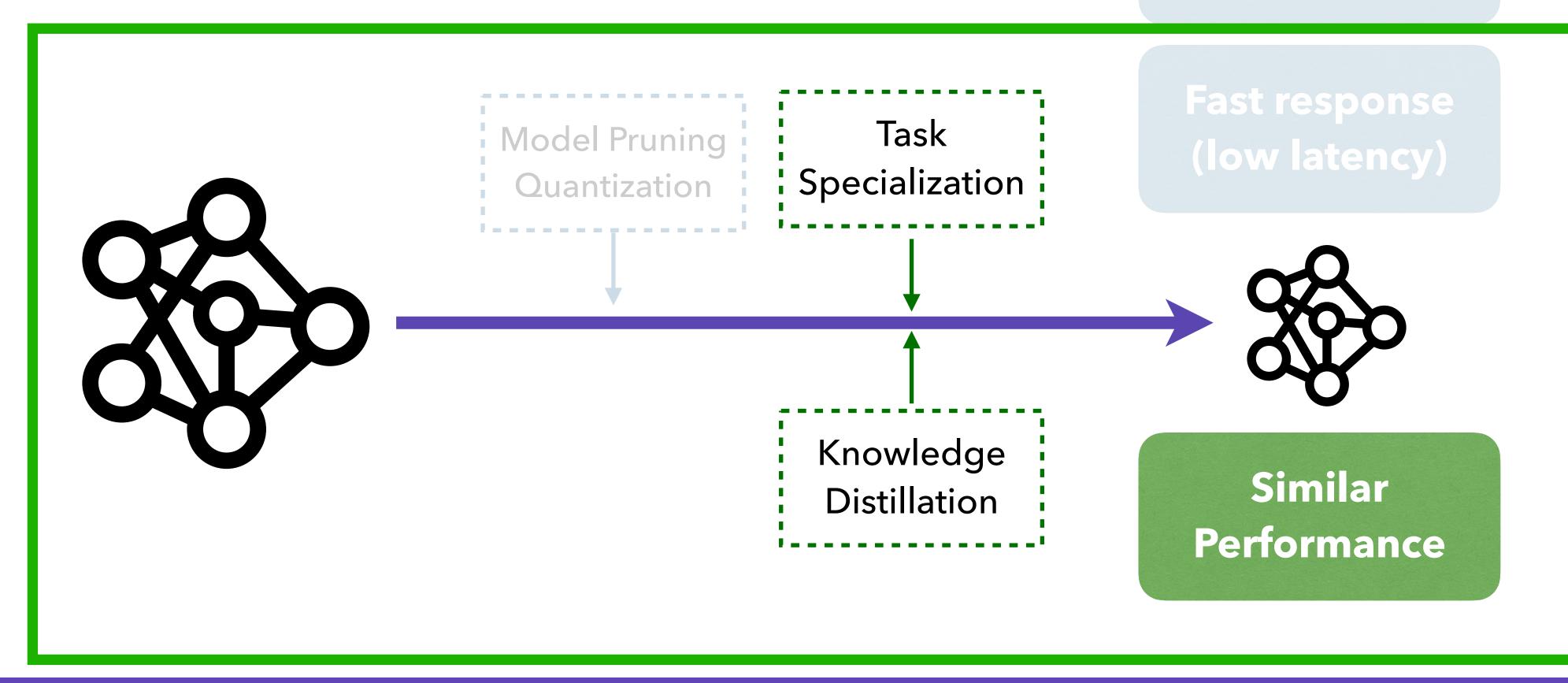
We often don't need to retrain everything!

Ask me anything Writing code Translating text Complex math Reasoning

Natural Language Processing - CSE 517 / CSE 447



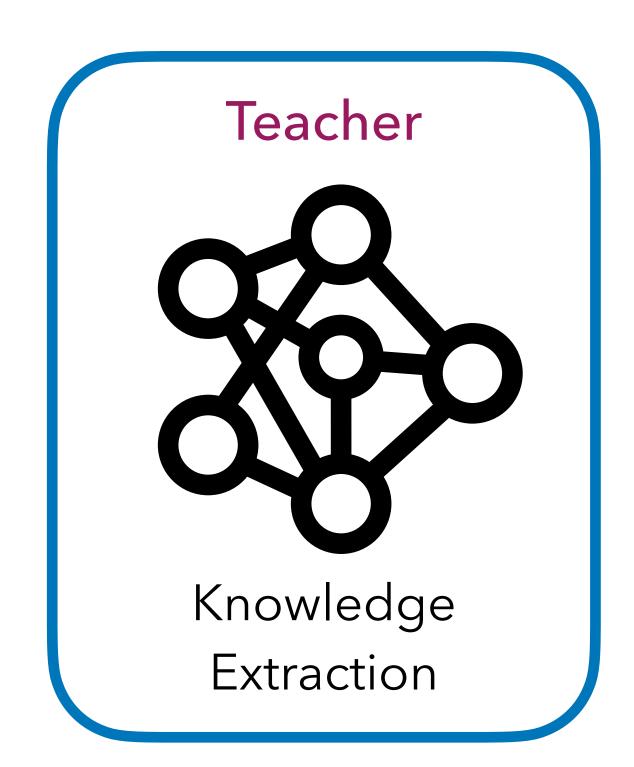
Today's focus



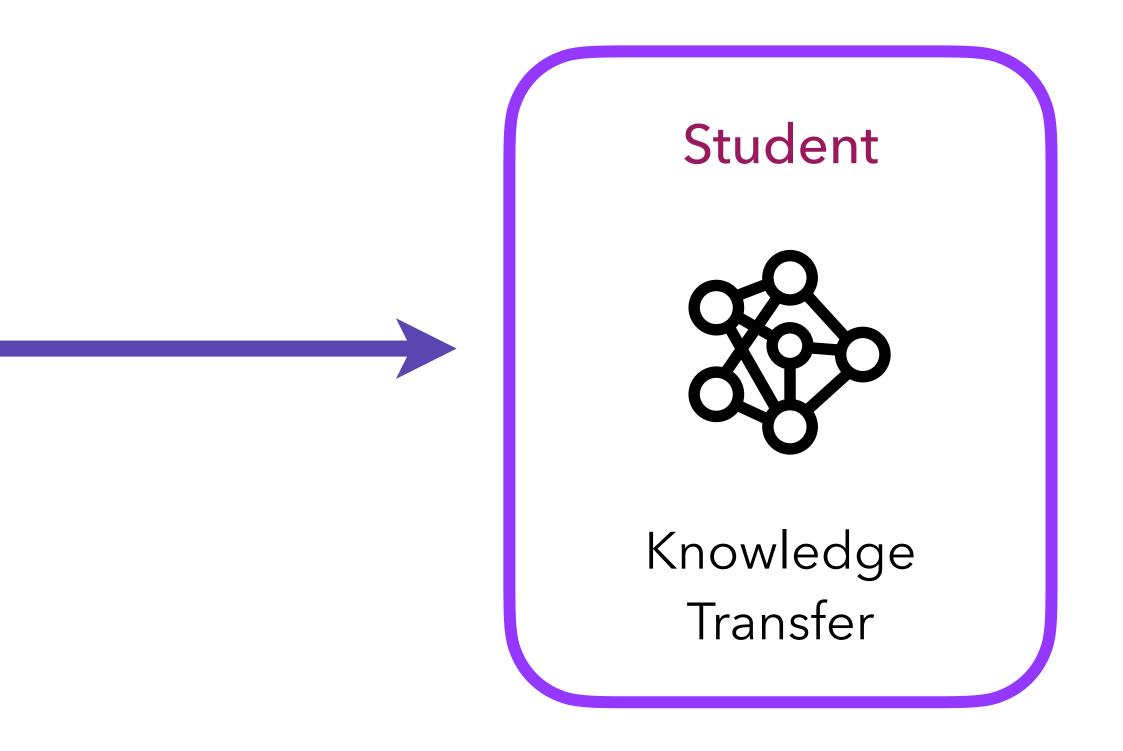
Natural Language Processing - CSE 517 / CSE 447

What is Knowledge Distillation?

1. Knowledge Extraction from a generalist model (the teacher) 2. Transfer Knowledge to a specialized model (the student)

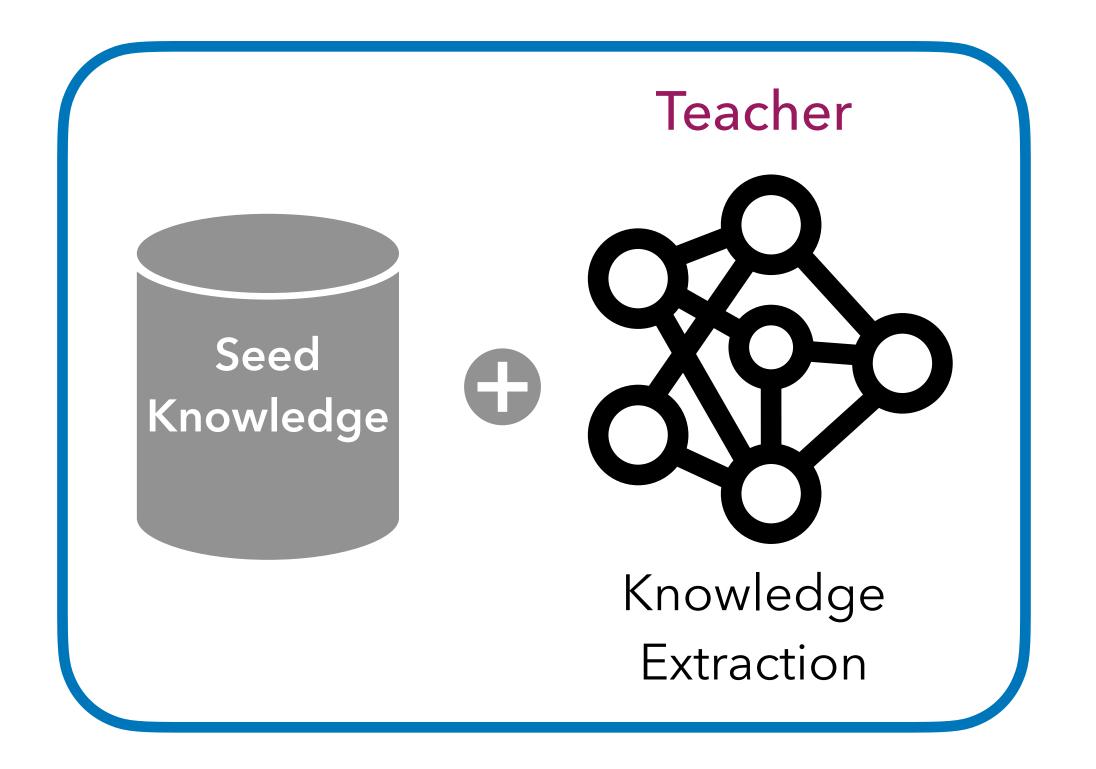


Natural Language Processing - CSE 517 / CSE 447

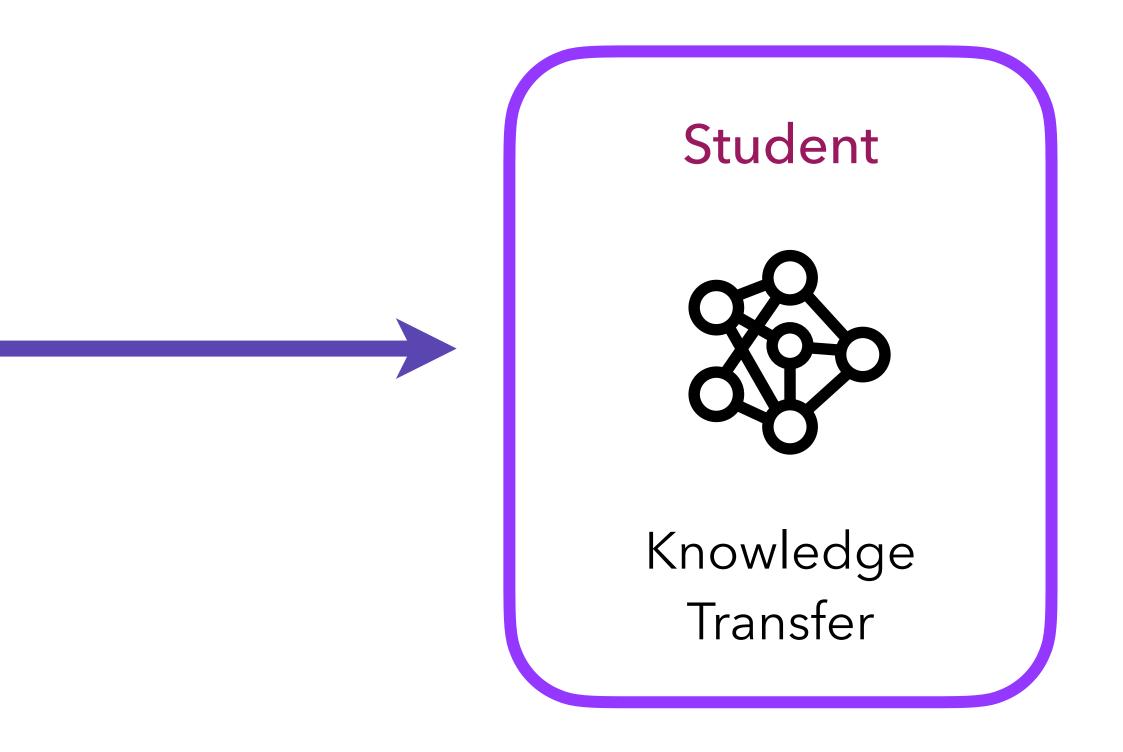


What is Knowledge Distillation?

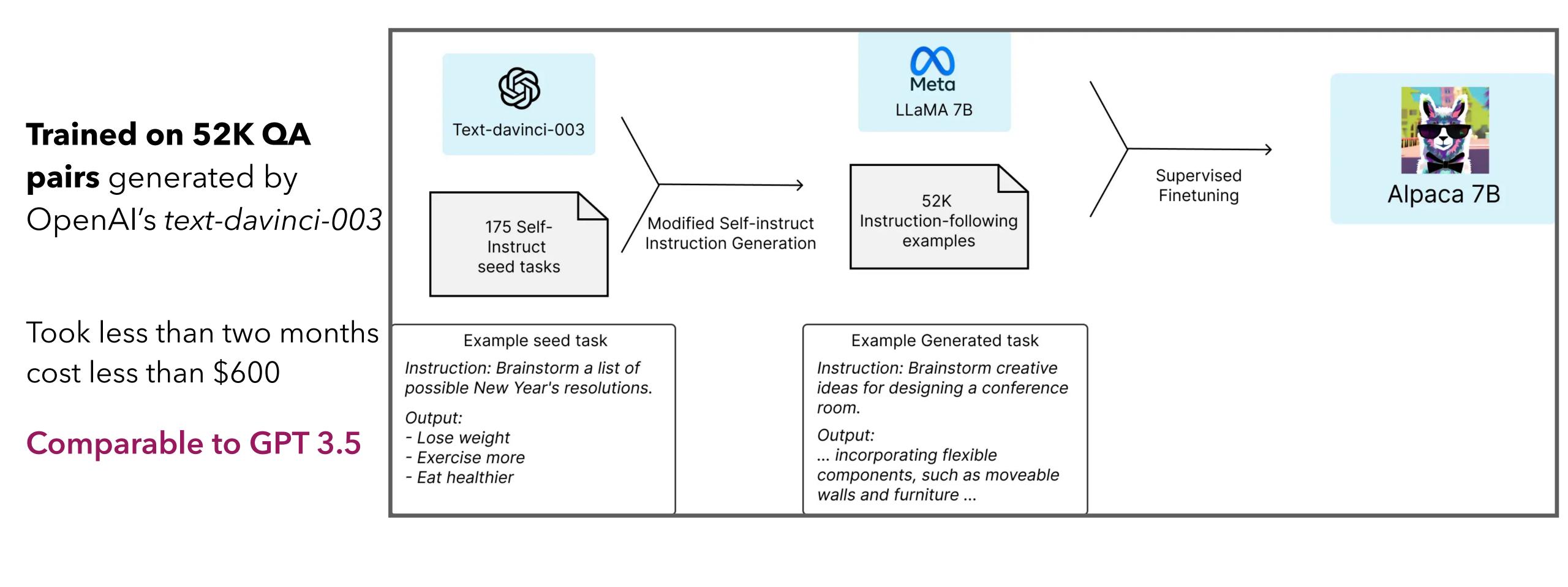
1. Knowledge Extraction from a generalist model (the teacher) 2. Transfer Knowledge to a specialized model (the student)



Natural Language Processing - CSE 517 / CSE 447



Examples of KD: Alpaca



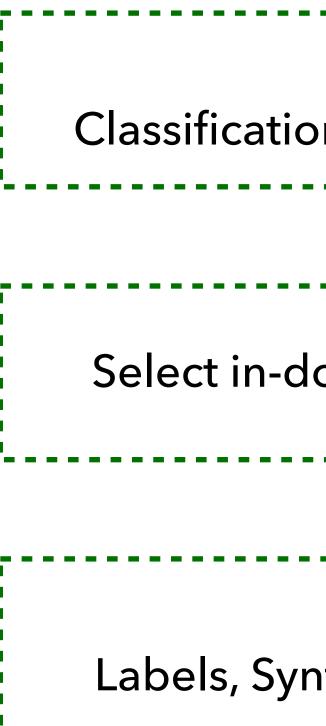
Natural Language Processing - CSE 517 / CSE 447

https://crfm.stanford.edu/2023/03/13/alpaca.html

Knowledge Extraction from LLMs

Curate seed knowledge

Generate teacher knowledge



Natural Language Processing - CSE 517 / CSE 447

	_
What to retain n, information extraction , Summarization, QA?	
omain examples and create prompt templates	
What to Extract thetic data, hidden representations, feedback	

Types of Knowledge Distillation: Labels, Representations, Synthetic Data, and Feedback

CSE 447: Natural Language Processing, Fall 2024

The most basic KD: teacher labeling

Teacher provides supervision for student

Target Skills/Domain

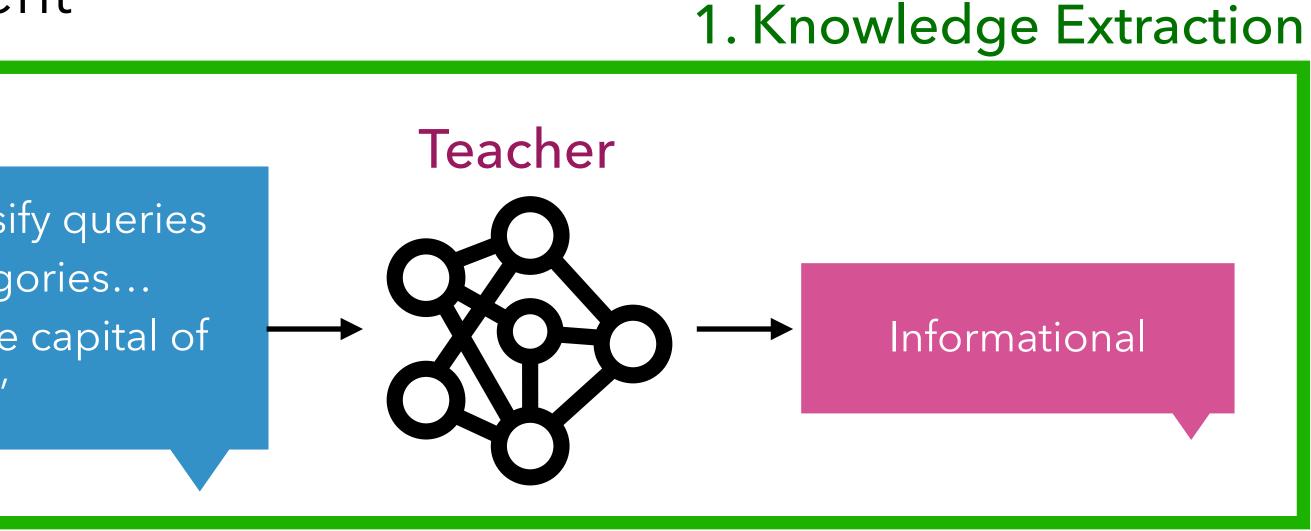
text classification query categorization

Seed Knowledge

in-domain examples input prompt for CLS

Help the user classify queries into 1 of 5 categories... Query: "What is the capital of France?"

Natural Language Processing - CSE 517 / CSE 447



The most basic KD: teacher labeling

Teacher provides supervision for student

Target Skills/Domain

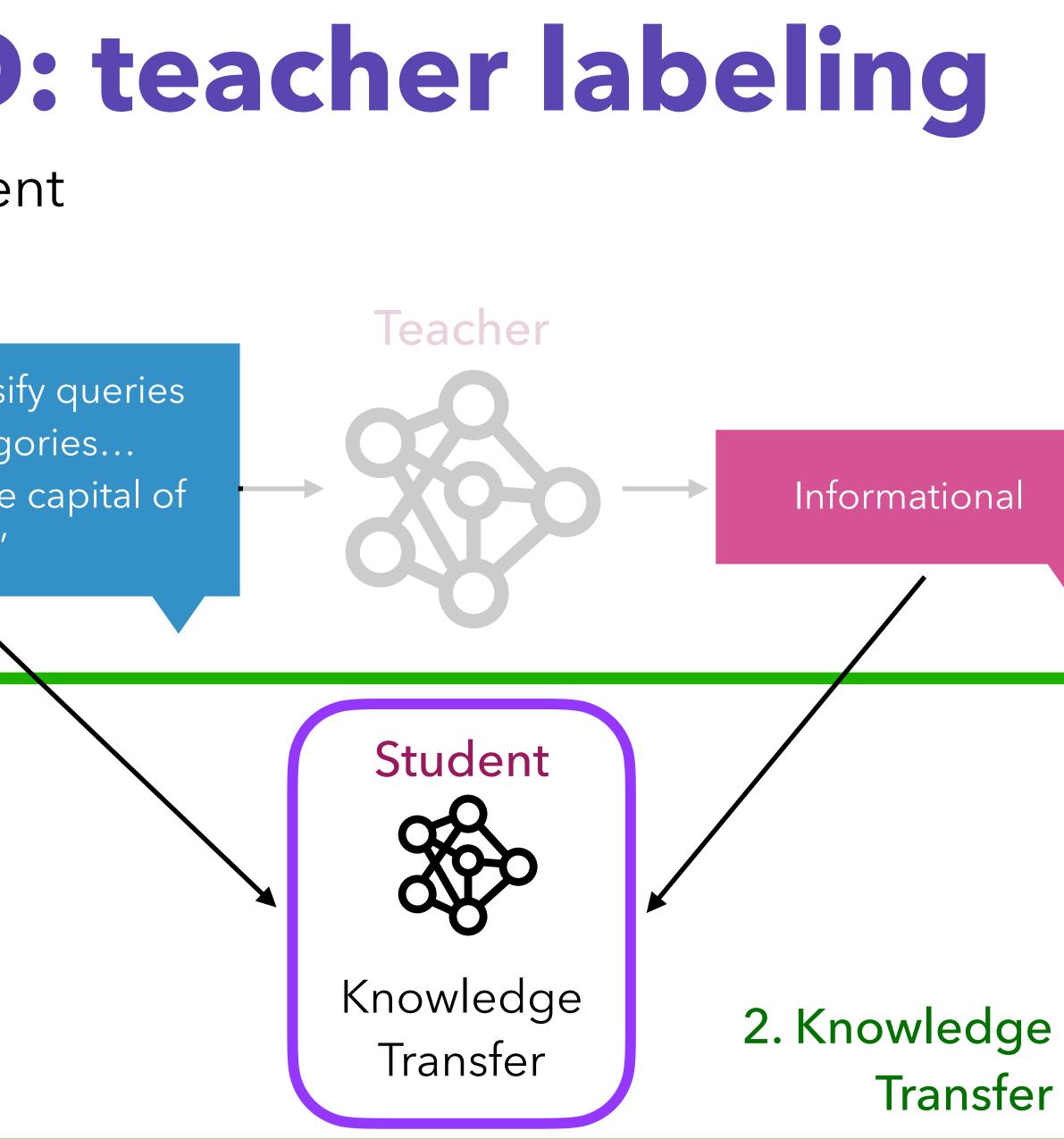
text classification query categorization

Seed Knowledge

in-domain examples input prompt for CLS

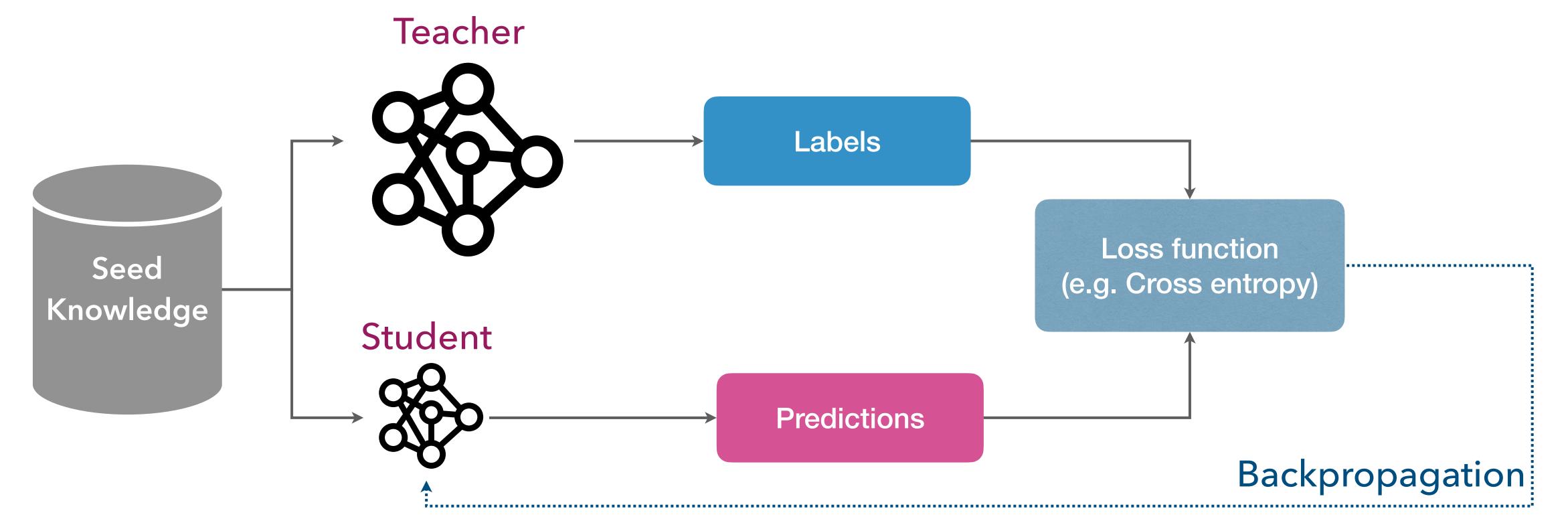
Help the user classify queries into 1 of 5 categories... Query: "What is the capital of France?"

Natural Language Processing - CSE 517 / CSE 447



KD via hidden representations

Teacher provides supervision for student



Strengths: Soft-labels (logits) express uncertainty and teacher knowledge Weaknesses: Labels don't capture all of the rich knowledge of the teacher

Natural Language Processing - CSE 517 / CSE 447

KD via hidden representations

Teacher and student hidden representations are aligned

Target Skills/Domain

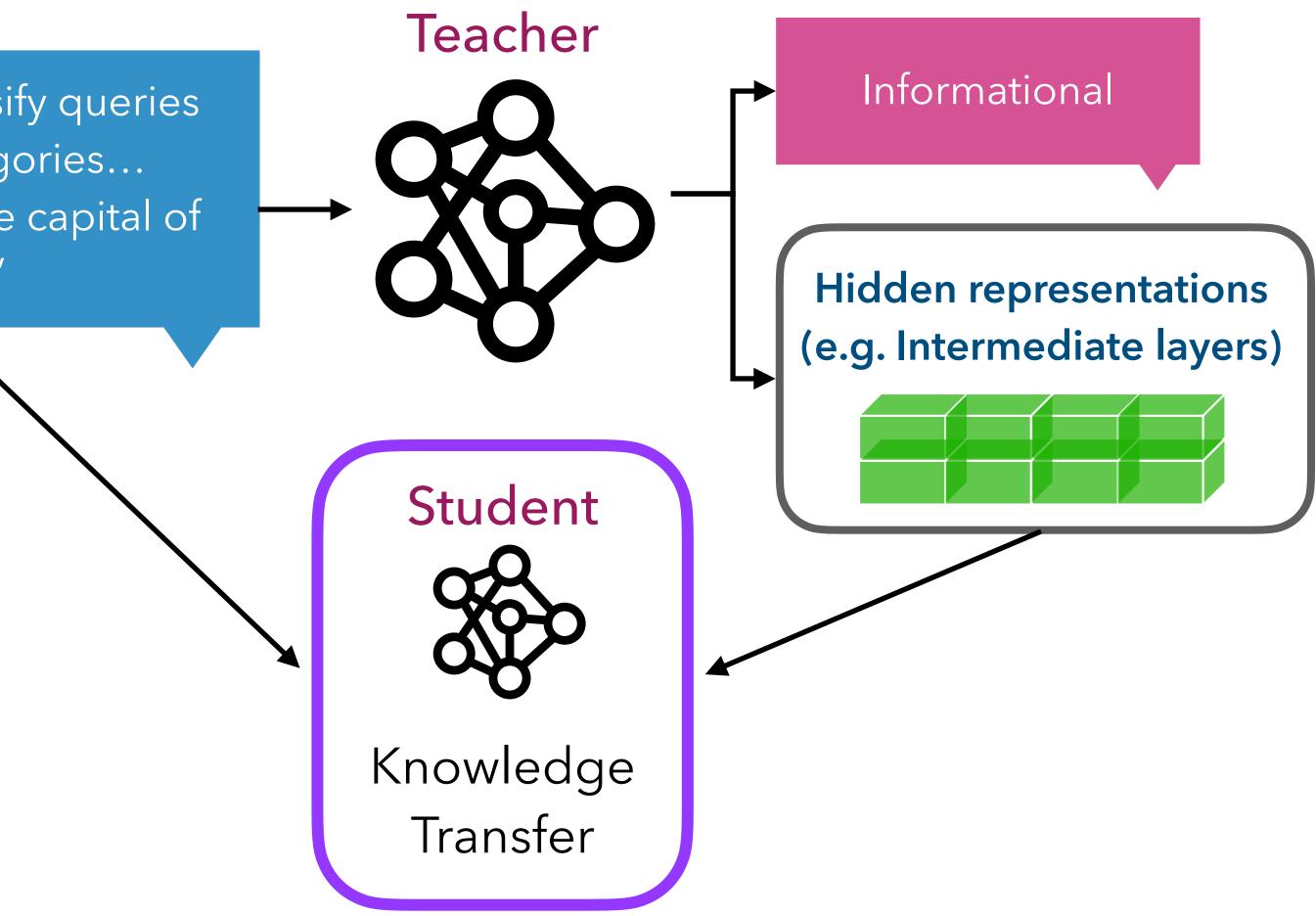
text classification query categorization

Seed Knowledge

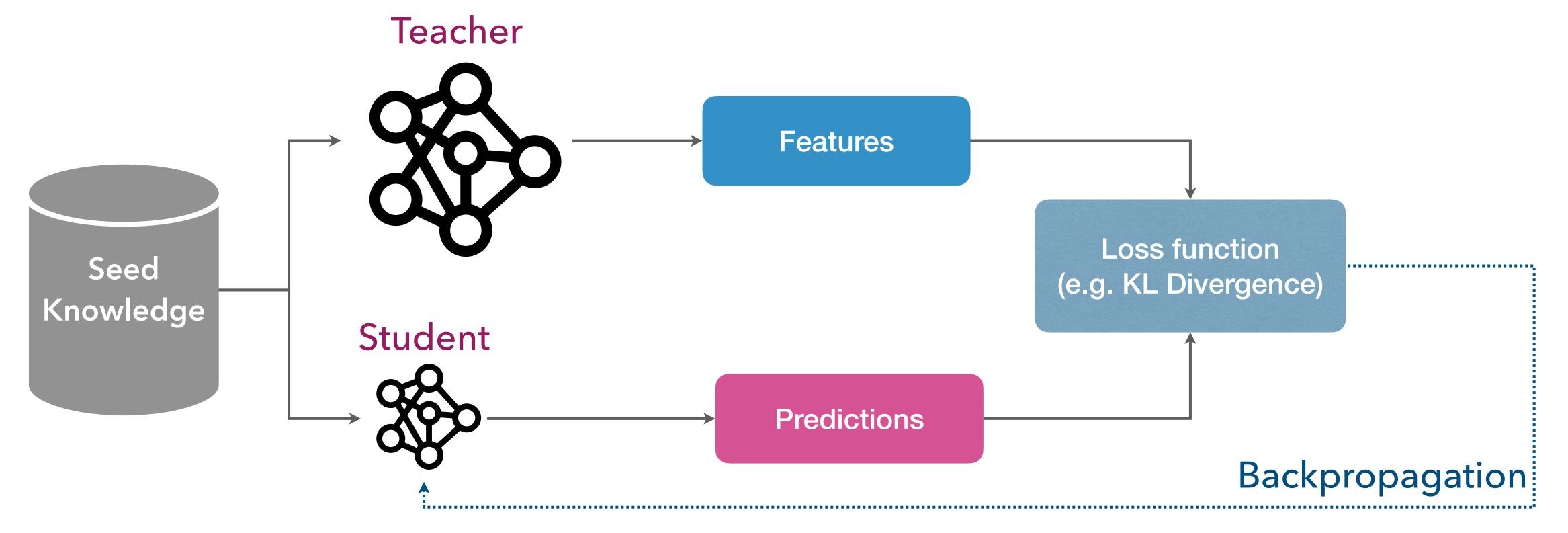
in-domain examples input prompt for CLS

Help the user classify queries into 1 of 5 categories... Query: "What is the capital of France?"

Natural Language Processing - CSE 517 / CSE 447



KD via hidden representations Teacher and student hidden representations are aligned



Strengths: Hidden representations expressed nuanced understanding of task Weaknesses: Requires (un)labeled data source as seed knowledge

Natural Language Processing - CSE 517 / CSE 447

KD via synthetic data Teacher expands the student training dataset

Target Skills/Domain

text classification query categorization

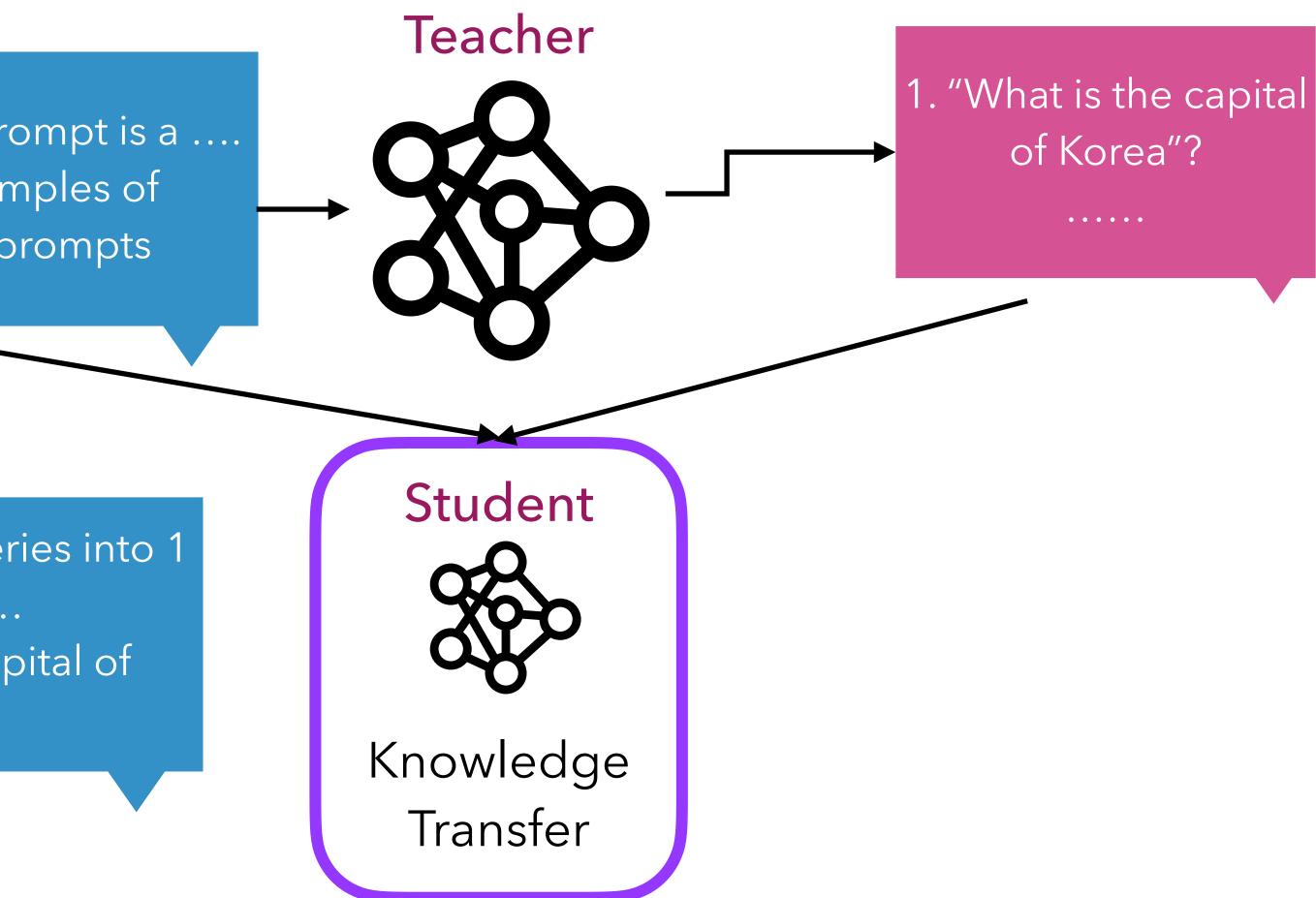
Seed Knowledge

in-domain examples data generation prompt input prompt for CLS

An "informational" prompt is a generate 10 examples of "informational" prompts

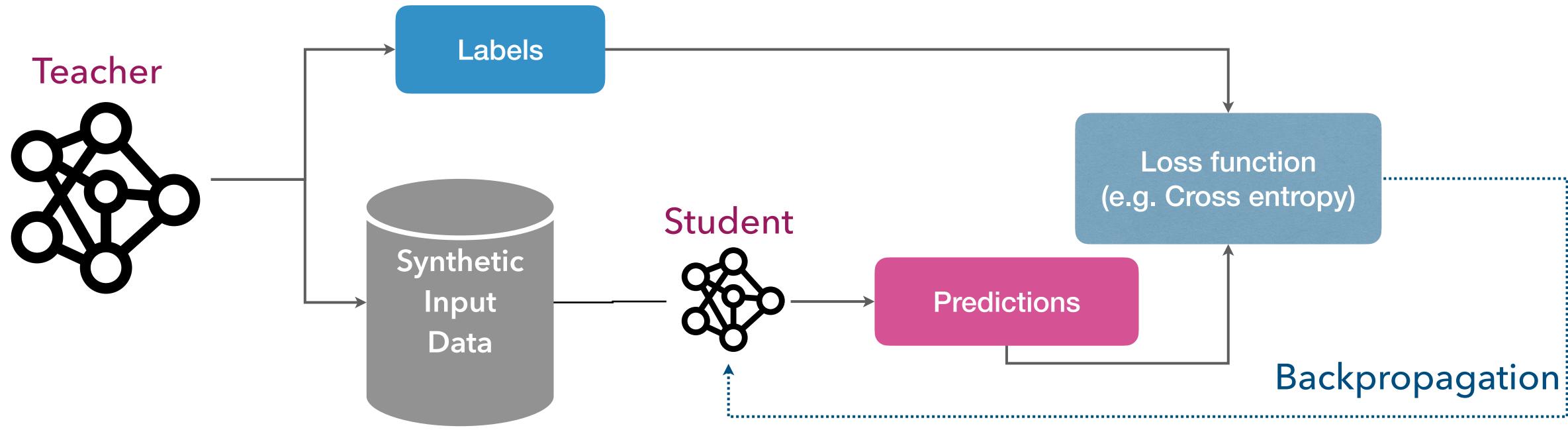
Help the user classify queries into 1 of 5 categories ... Query: "What is the capital of Korea?"

Natural Language Processing - CSE 517 / CSE 447



KD via synthetic data

Teacher expands the student training dataset



Strengths: Leverage generation of teacher to overcome a lack of in-domain data Weaknesses: Misalignment of synthetic and real-world data

Natural Language Processing - CSE 517 / CSE 447

KD via feedback

Teacher provides feedback on student generations

Reward

Model

Target Skills/Domain

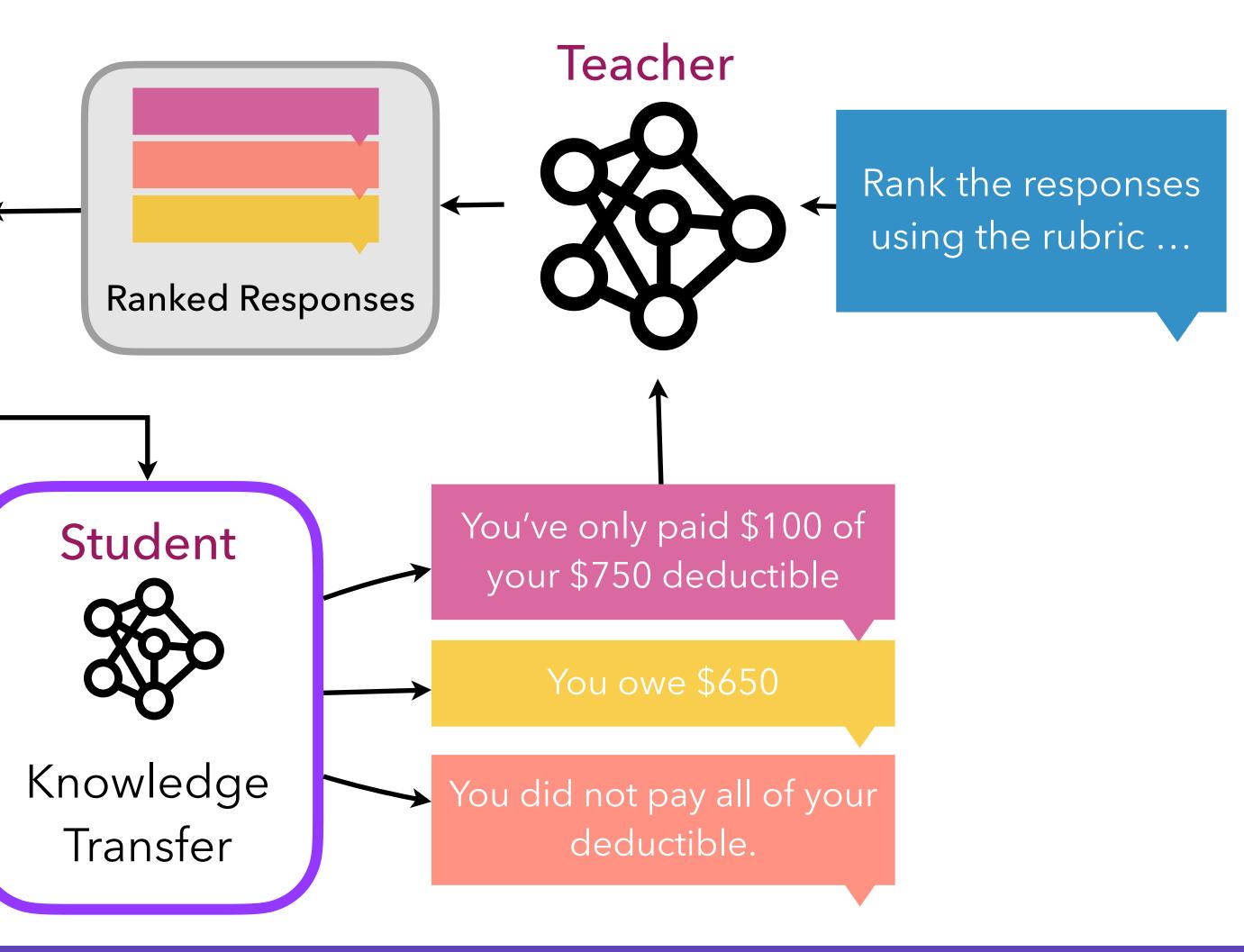
Health insurance QA

Seed Knowledge

in-domain examples input prompt for CLS

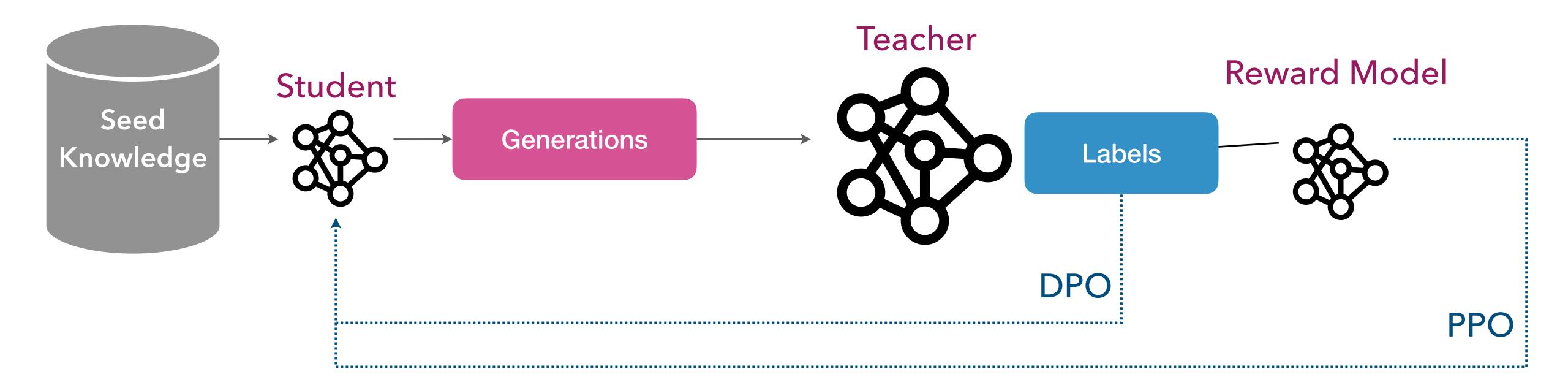
Why is the hospital billing me?

Natural Language Processing - CSE 517 / CSE 447



KD via feedback

Teacher provides feedback on student generations



Strengths: Automate preference feedback process Weaknesses: Risk of reinforcing teacher biases

Natural Language Processing - CSE 517 / CSE 447

Knowledge Distillation

42

What is knowledge distillation:

Extracting task specific knowledge from a generalist teacher model and transferring it to a specialized student model

Steps for knowledge extraction:

1) identify large skills, 2) curate seed knowledge, 3) generate knowledge

Types of knowledge extraction:

Natural Language Processing - CSE 517 / CSE 447

1) teacher labeling, 2) hidden representations, 3) synthetic data, and 4) feedback

Challenges and Best Practices

Teacher Quality

Performance is limited by the teacher

Need fine-grained evaluations of potential teachers to understand teacher capabilities

+ also open-source vs. closed limits the types of KD you can use

Natural Language Processing - CSE 517 / CSE 447

Data Quality

Data Quality is vital for success

Data curation for seed knowledge is important for effective transfer

If unlabeled data is scarce, try multi-task student learning

Advanced Knowledge Distillation: Impossible Distillation

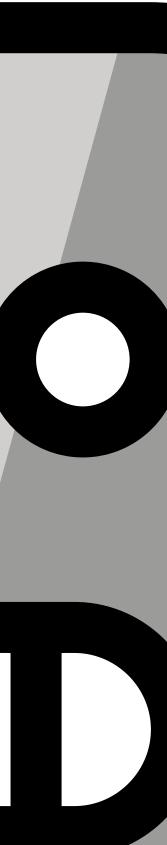
CSE 447: Natural Language Processing, Fall 2024

Impossible Distillation

from Low-quality Model to High-Quality Dataset & Model for Summarization and Paraphrasing

CSE 447: Natural Language Processing, Fall 2024

winning recipe = extreme-scale pre-training + RLHF at scale GPT-3 GPT-2 Low-quality, small model 777 S **High-quality, small model**



How is that even possible when imitating from proprietary LLMs are supposedly hopeless?

True for the particularity of their experimental settings, but one must not generalize beyond what the paper showed:

Arnav Gudibande* UC Berkeley arnavg@berkeley.edu

Xinyang Geng UC Berkeley young.geng@berkeley.edu

— factual QA is especially hard to distill — generalist vs specialist

The False Promise of Imitating Proprietary LLMs

Eric Wallace* UC Berkeley ericwallace@berkeley.edu

Charlie Snell* UC Berkeley csnell22@berkeley.edu

Hao Liu UC Berkeley hao.liu@berkeley.edu

Pieter Abbeel UC Berkeley pabbeel@berkeley.edu

Sergey Levine UC Berkeley svlevine@berkeley.edu

Dawn Song UC Berkeley dawnsong@berkeley.edu

Are small LMs completely out of league?

https://twitter.com/EmojiMashupBot/status/1266262982406729730

Hope: Task-specific Symbolic Knowledge Distillation works!

Symbolic Knowledge Distillation: from General Language Models to Commonsense Models

Peter West^{†‡*} Chandra Bhagavatula[‡] Jack Hessel[‡] Jena D. Hwang[‡] Liwei Jiang^{†‡} Ronan Le Bras[‡] Ximing Lu^{†‡} Sean Welleck^{†‡} Yejin Choi ^{†‡*} [†]Paul G. Allen School of Computer Science & Engineering, University of Washington [‡]Allen Institute for Artificial Intelligence

Specializing Smaller Language Models towards Multi-Step Reasoning

Teaching Small Language Models to Reason

Lucie Charlotte Magister* University of Cambridge lcm67@cam.ac.uk

Jonathan Mallinson Google Research jonmall@google.com

Jakub Adamek Google Research enkait@google.com

Eric Malmi Google Research emalmi@google.com

Aliaksei Severyn Google Research severyn@google.com

Orca: Progressive Learning from Complex **Explanation Traces of GPT-4**

Subhabrata Mukherjee^{*†}, Arindam Mitra^{*}

Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, Ahmed Awadallah

Microsoft Research

LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language Models

Chan Hee Song The Ohio State University song.1855@osu.edu

Jiaman Wu The Ohio State University wu.5686@osu.edu

Brian M. Sadler Wei-Lun Chao **DEVCOM ARL** The Ohio State University brian.m.sadler6.civ@army.mil chao.209@osu.edu

Clayton Washington The Ohio State University washington.534@osu.edu

Yu Su The Ohio State University su.806@osu.edu

Yao Fu⁺ Hao Peng⁺ Litu Ou⁺ Ashish Sabharwal⁺ Tushar Khot⁺

Textbooks Are All You Need

Caio César Teodoro Mendes Suriya Gunasekar Yi Zhang Jyoti Aneja Sivakanth Gopi Mojan Javaheripi Allie Del Giorno Piero Kauffmann Gustavo de Rosa Olli Saarikivi Adil Salim Shital Shah Harkirat Singh Behl Sébastien Bubeck Xin Wang Ronen Eldan Adam Tauman Kalai Yin Tat Lee Yuanzhi Li

Microsoft Research

Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes

Cheng-Yu Hsieh¹^{*}, Chun-Liang Li², Chih-Kuan Yeh³, Hootan Nakhost², Yasuhisa Fujii³, Alexander Ratner¹, Ranjay Krishna¹, Chen-Yu Lee², Tomas Pfister² ¹University of Washington, ²Google Cloud AI Research, ³Google Research cydhsieh@cs.washington.edu

Our task in focus: learning to "abstract" in language

In NLP: ~ "sentence summarization"

• without extreme-scale pre-training without RL with human feedback at scale • without supervised datasets at scale

Al is as good as the data it was trained on

Natural Language Processing - CSE 517 / CSE 447

We will build on ...

Symbolic Knowledge Distillation

From General Language Models to Commonsense Models

Peter West

Liwei

Chandra Bhagavatula

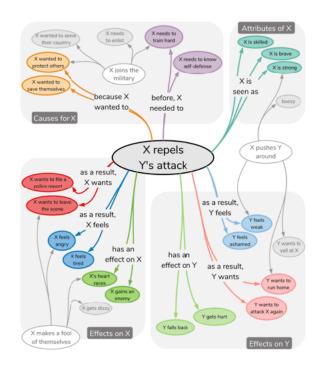
Jack Hessel

Jena Hwang

Jiang

- --- NAACL 2022 ----
 - New: ATOMIC-10x COMET-distill

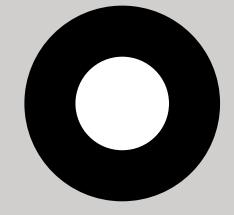
Symbolic Knowledge Distillation Few-shot generate / Filter GPT-3

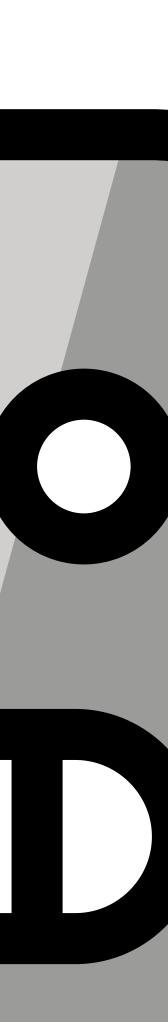


ATOMIC^{10X}: High-quality Commonsense KG

Fine-tune

COMETDIS ^{-L}: High-quality, small commonsense model



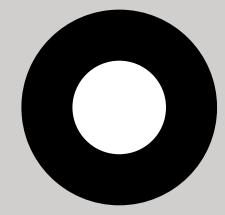


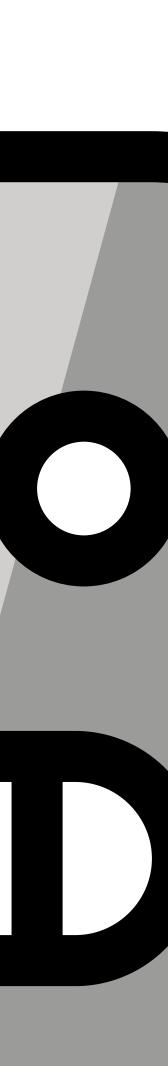
Impossible Distillation GPT-3

Low-quality, small model + Constrained Decoding + Off-the-shelf Filters

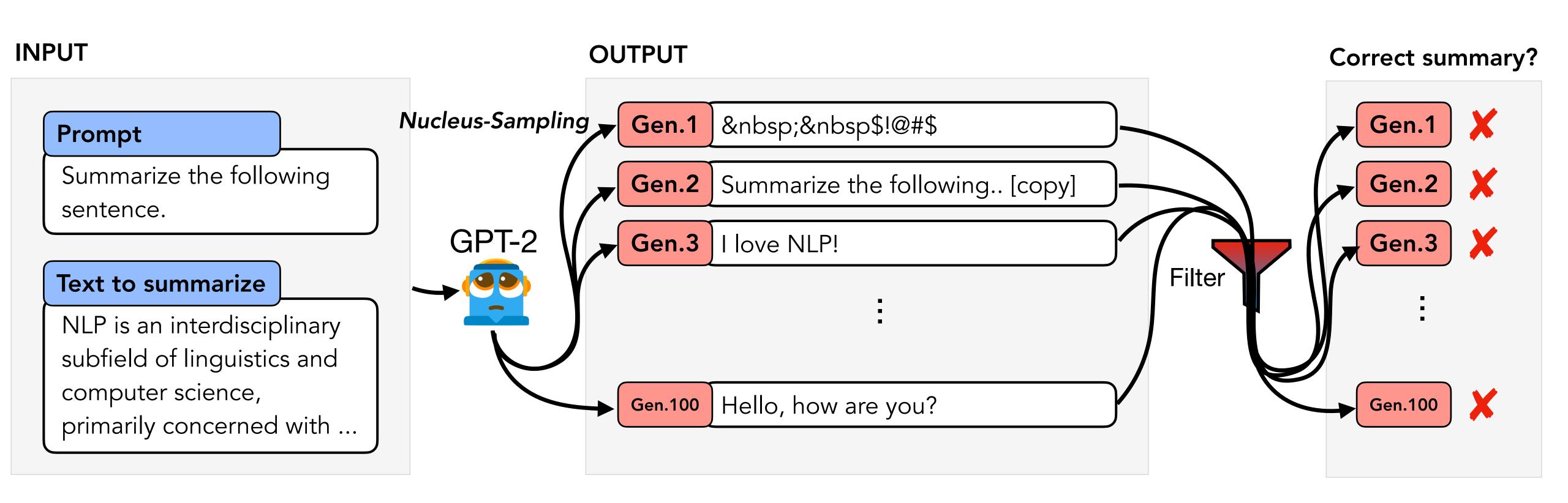
High-quality Task Dataset

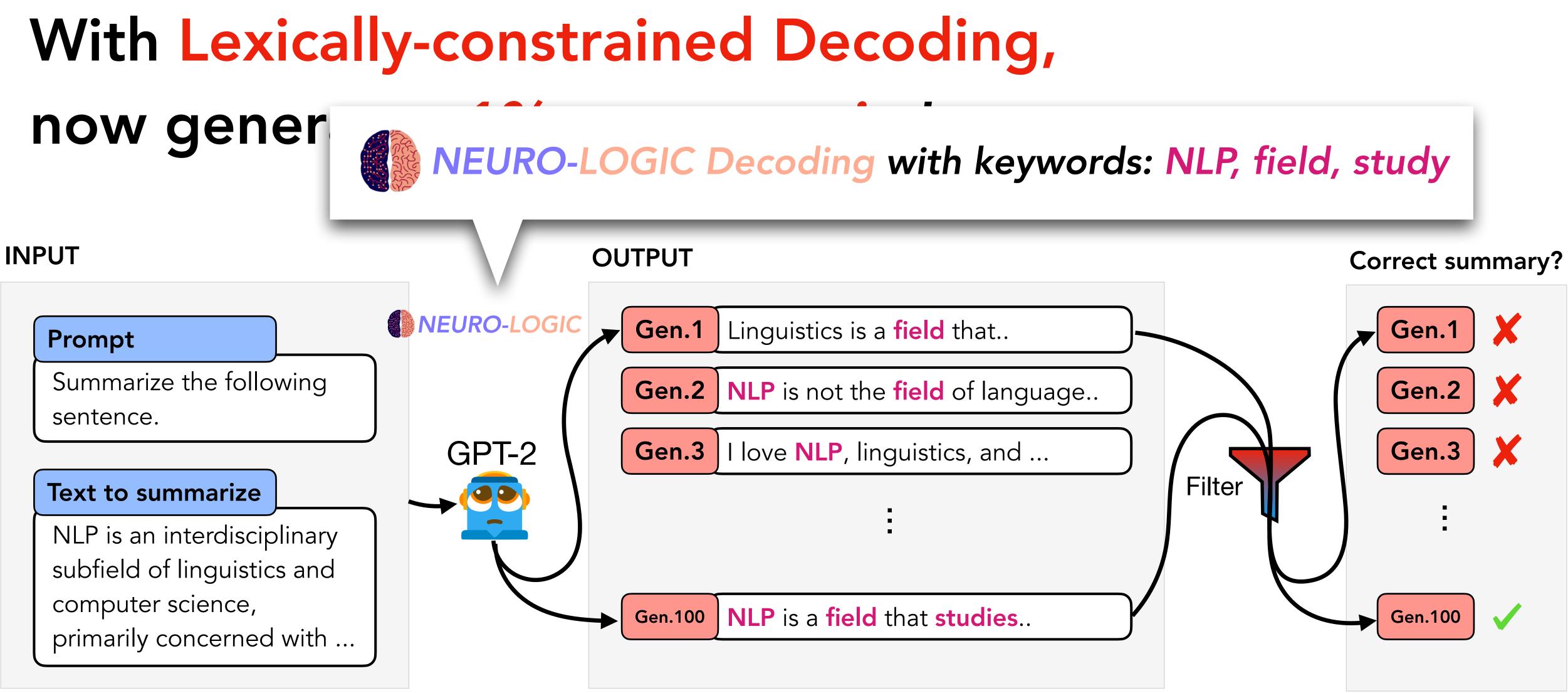
High-quality, small model

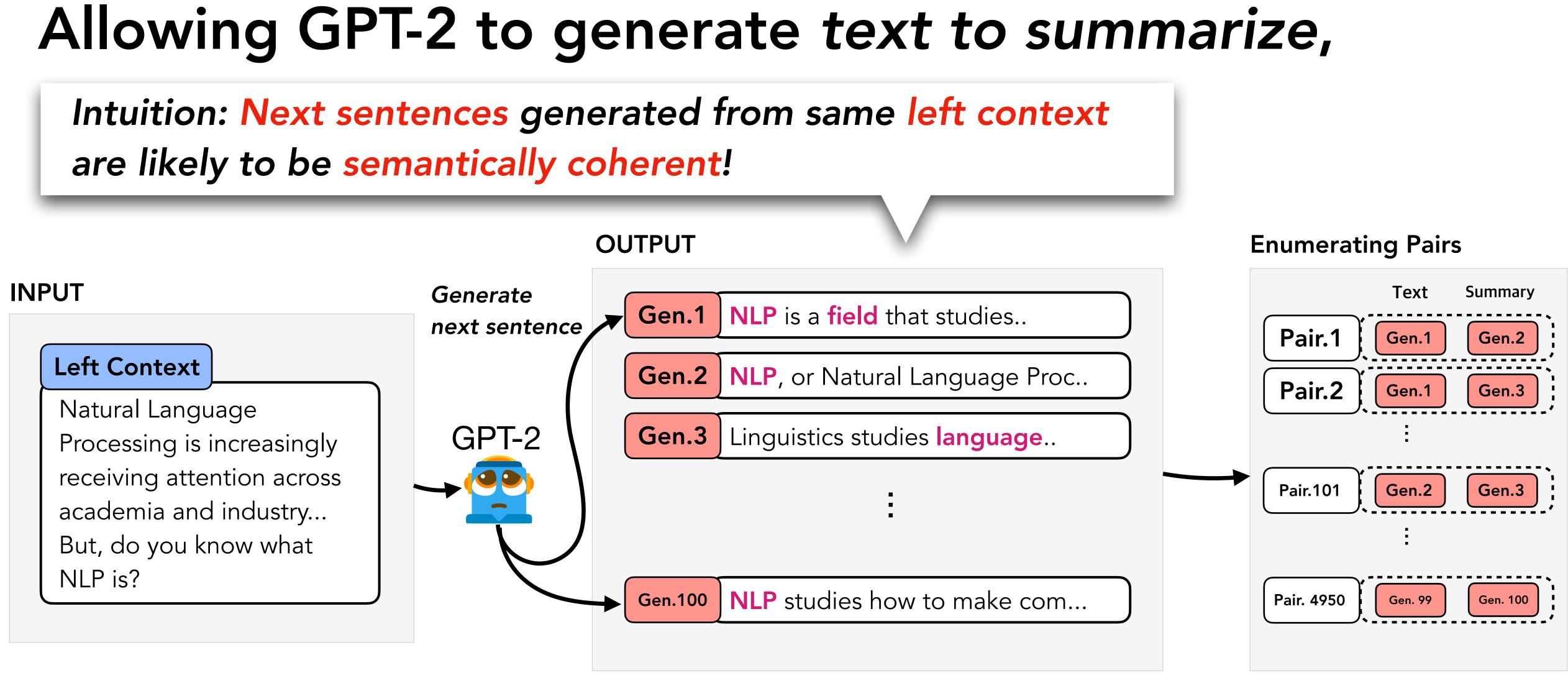




When GPT-2 is prompted to summarize... it generates < 0.1% correct pairs!

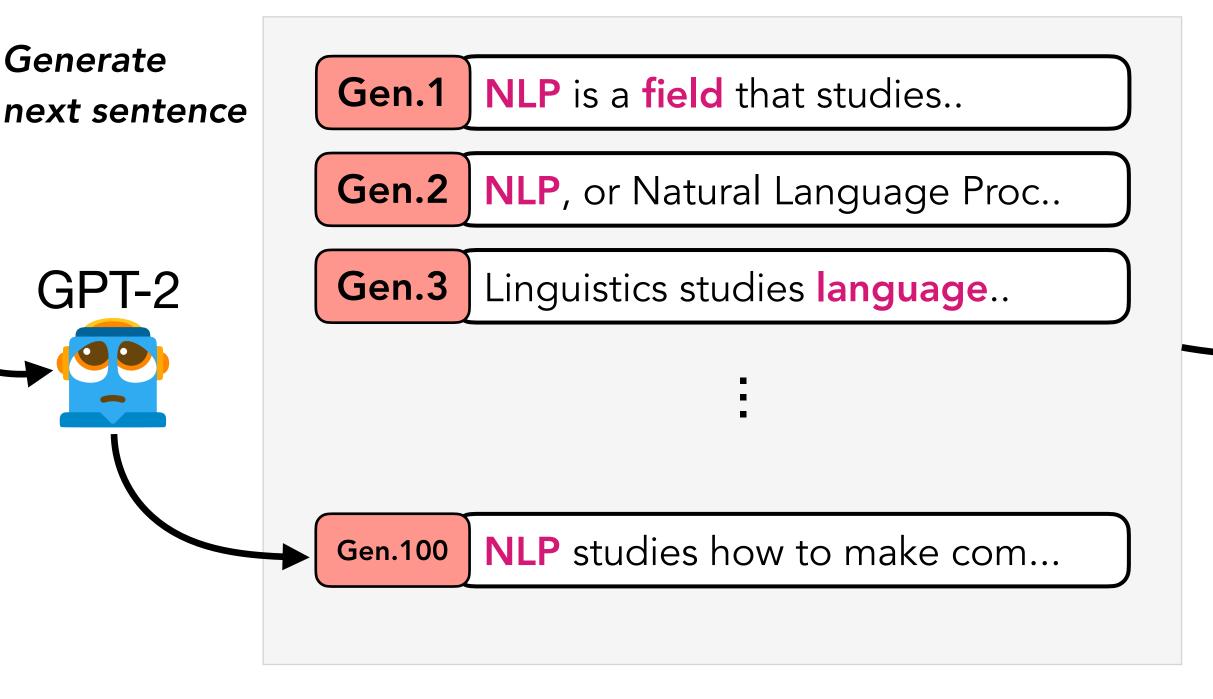


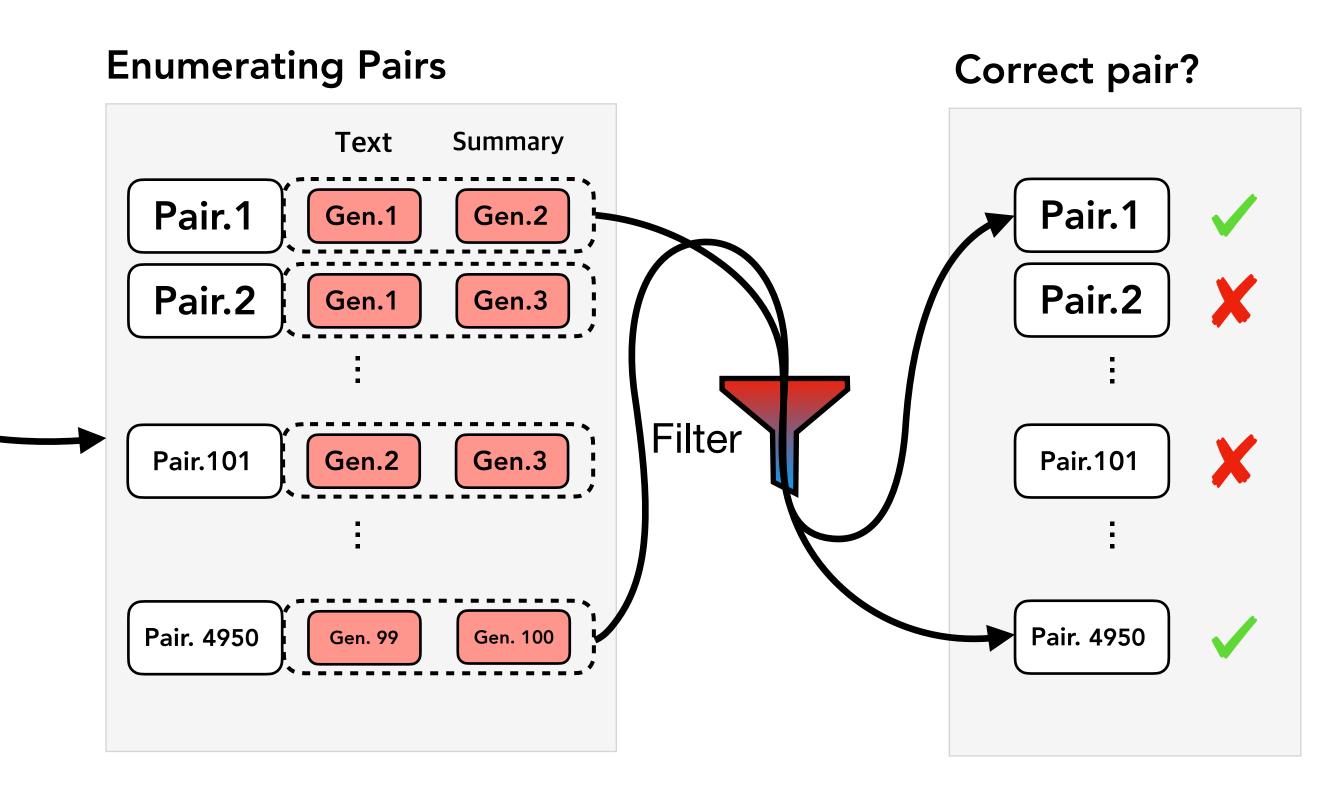




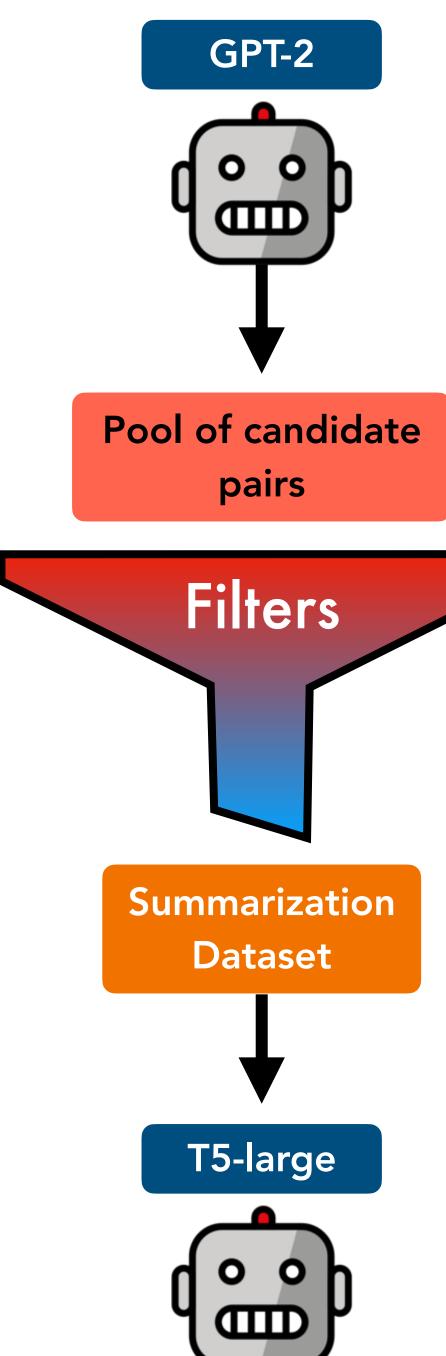
Allowing GPT-2 to generate text to summarize, it now generates >10% correct pairs!

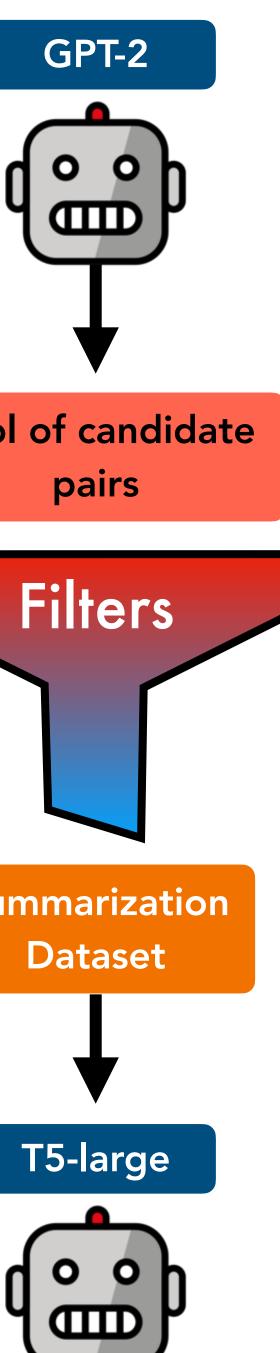
OUTPUT

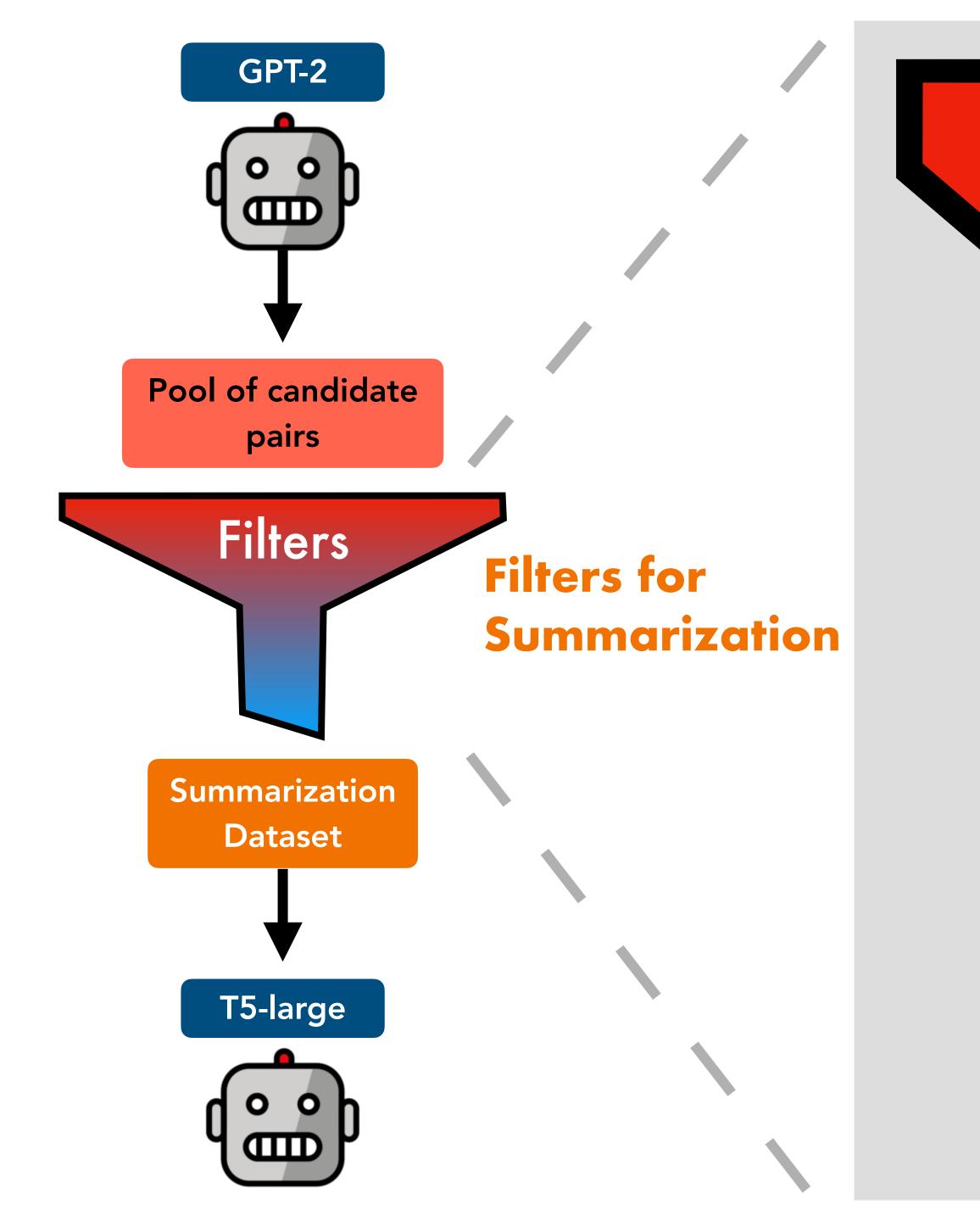




Overall Framework

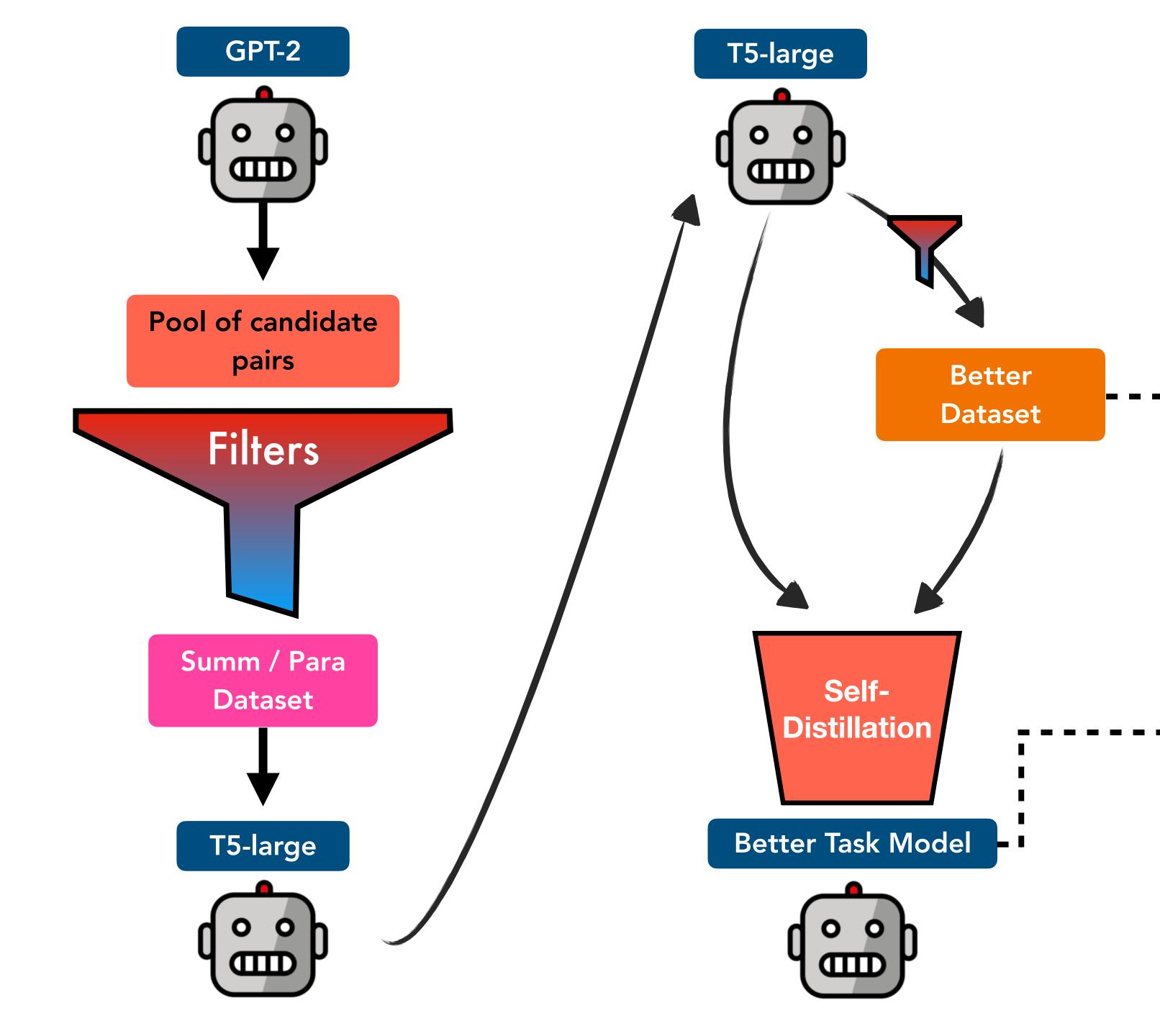






Entailment filter remove non-factual summaries using NLI

Diversity filter



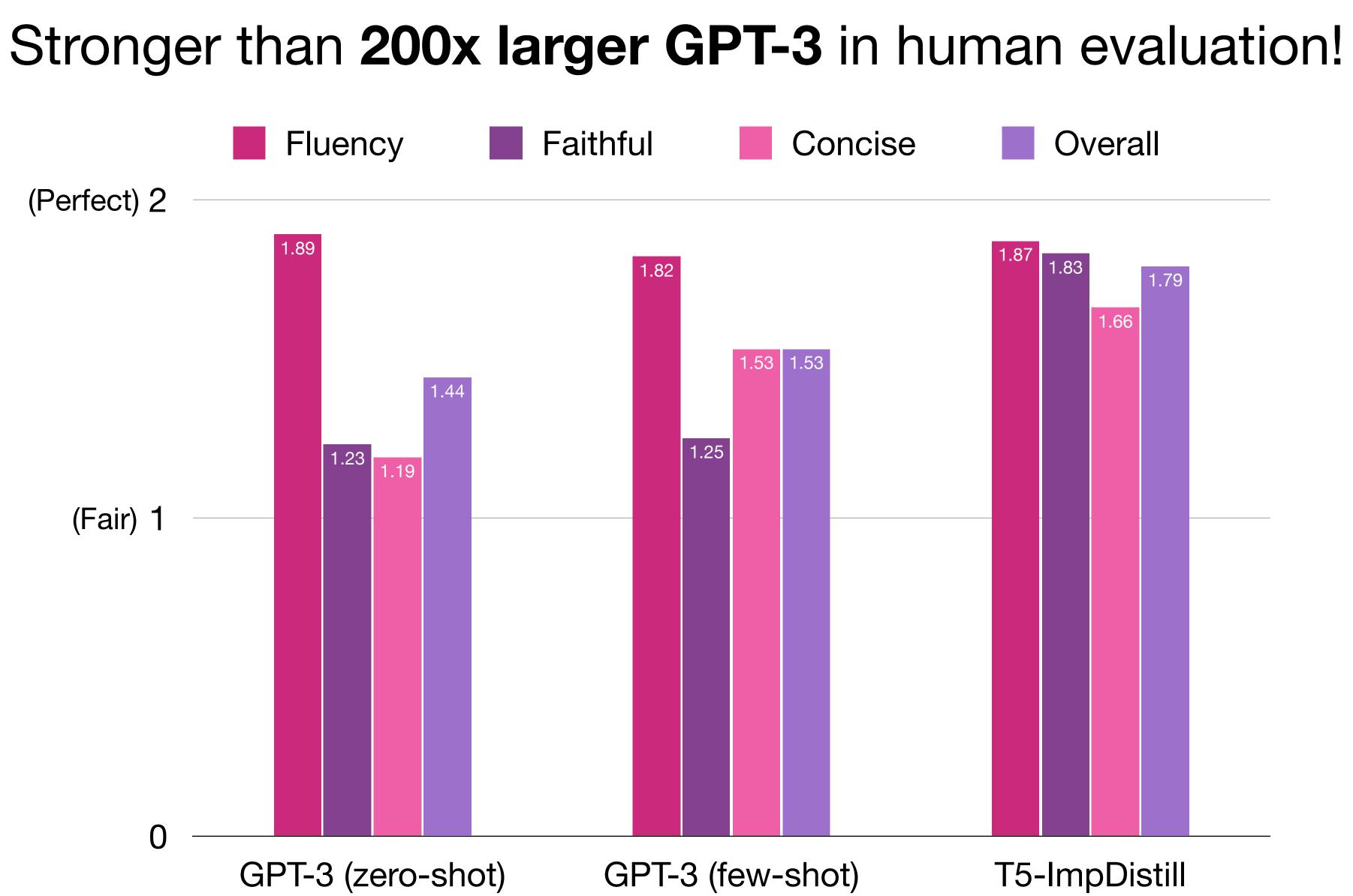
• 迹 DimSum+

3.4M samples for sentence summarization + paraphrasing, spanning news / reddit / bio domains

770M LM capable of both controllable summarization + paraphrasing, distilled purely from < 2B LMs

•

ıg,



CSE 447: Natural Language Processing, Fall 2024

Thank you.

