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Language structure & corresponding linguistic subfields
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1. Ambiguity
2. Variation
3. Sparsity
4. Expressivity
5. Unmodeled variables

6. Unknown representation R 

Why is language interpretation hard?
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Ambiguity: word sense disambiguation
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● Ambiguity at multiple levels:
○ Word senses: bank (finance or river?)
○ Part of speech: chair (noun or verb?)
○ Syntactic structure: I can see a man with a telescope
○ Multiple: I saw her duck 

Ambiguity
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Dealing with ambiguity
● How can we model ambiguity and choose the correct analysis in context? 

○ non-probabilistic methods (FSMs for morphology, CKY parsers for syntax) return all possible 
analyses.

○ probabilistic models (HMMs for part-of-speech tagging, PCFGs for syntax) and algorithms 
(Viterbi, probabilistic CKY) return the best possible analysis, i.e., the most probable one 
according to the model

○ Neural networks, pretrained language models now provide end-to-end solutions

● But the “best” analysis is only good if our probabilities are accurate. Where do they come from?

6



Undergrad NLP Yulia Tsvetkov

Corpora
● A corpus is a collection of text

○ Often annotated in some way
○ Sometimes just lots of text 

● Examples
○ Penn Treebank: 1M words of parsed WSJ
○ Canadian Hansards: 10M+ words of aligned French / English sentences
○ Yelp reviews
○ The Web: billions of words of who knows what
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1. Ambiguity
2. Variation
3. Sparsity
4. Expressivity
5. Unmodeled variables

6. Unknown representation R 

Why is language interpretation hard?
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Variation
● ~7K languages
● Thousands of 

language varieties
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Englishes
Africa is a continent with a very high linguistic diversity: 
there are an estimated 1.5-2K African languages from 6 language 
families. 1.33 billion people
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NLP beyond English
● ~7,000 languages 
● thousands of language varieties
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Most of the world today is multilingual 

Source: EthnologueSource: US Census Bureau
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Tokenization
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Tokenization + disambiguation
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● Quechua

Tokenization + morphological analysis
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● German

Tokenization + morphological analysis
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● Every language sees the world in a different way
○ For example, it could depend on cultural or historical conditions

○ Russian has very few words for colors, Japanese has hundreds

○ Multiword expressions, e.g. happy as a clam, it’s raining cats and dogs or wake up and metaphors, e.g. 

love is a journey are very different across languages

Semantic analysis
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● Non-standard language, emojis, hashtags, names

Linguistic variation
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● Suppose we train a part of speech tagger or a parser on the Wall Street Journal

● What will happen if we try to use this tagger/parser for social media??

Variation
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1. Ambiguity
2. Scale
3. Variation
4. Sparsity
5. Expressivity
6. Unmodeled variables

7. Unknown representation R 

Why is language interpretation hard?
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Sparse data due to Zipf’s Law

● To illustrate, let’s look at the frequencies of different words in a large text corpus
● Assume “word” is a string of letters separated by spaces

Sparsity
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Most frequent words in the English Europarl corpus (out of 24m word tokens)

Word Counts
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But also, out of 93,638 distinct words (word types), 36,231 occur only once.

Examples:

● cornflakes, mathematicians, fuzziness, jumbling
● pseudo-rapporteur, lobby-ridden, perfunctorily,
● Lycketoft, UNCITRAL, H-0695
● policyfor, Commissioneris, 145.95, 27a

Word Counts
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Order words by frequency. What is the frequency of nth ranked word?

Plotting word frequencies
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Implications

● Regardless of how large our corpus is, there will be a lot of infrequent (and 
zero-frequency!) words

● This means we need to find clever ways to estimate probabilities for things we 
have rarely or never seen

Zipf’s Law
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1. Ambiguity
2. Scale
3. Variation
4. Sparsity
5. Expressivity
6. Unmodeled variables

7. Unknown representation R 

Why is language interpretation hard?
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Not only can one form have different meanings (ambiguity) but the same meaning 
can be expressed with different forms:

She gave the book to Tom         vs.        She gave Tom the book

Some kids popped by                vs.        A few children visited

Is that window still open?          vs.        Please close the window

Expressivity
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1. Ambiguity
2. Scale
3. Variation
4. Sparsity
5. Expressivity
6. Unmodeled variables

7. Unknown representation R 

Why is language interpretation hard?
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Unmodeled variables

“Drink this milk”
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World knowledge
● I dropped the glass on the floor and it broke
● I dropped the hammer on the glass and it broke
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1. Ambiguity
2. Scale
3. Variation
4. Sparsity
5. Expressivity
6. Unmodeled variables

7. Unknown representation R 

Why is language interpretation hard?
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● Very difficult to capture what is R , since we don’t even know how to represent 
the knowledge a human has/needs: 
○ What is the “meaning” of a word or sentence? 
○ How to model context? 
○ Other general knowledge?

Unknown representation
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● Sensitivity to a wide range of phenomena and constraints in human language
● Generality across languages, modalities, genres, styles
● Strong formal guarantees (e.g., convergence, statistical efficiency, consistency)
● High accuracy when judged against expert annotations or test data
● Ethical

Desiderata for NLP models
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Text Classification
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Is this spam?
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from: ECRES 2022 <2022@ecres.net> via amazonses.com 

reply-to: 2022@ecres.net

to: yuliats@cs.washington.edu

date: Feb 22, 2022, 7:21 AM

subject: The Best Renewable Energy Conference ( Last chance ! )

signed-by: amazonses.com

security:  Standard encryption (TLS) Learn more

https://support.google.com/mail/answer/1311182?hl=en&authuser=1
https://support.google.com/mail?hl=en&p=tls&authuser=1
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Spam classification
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spam

not spam
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Language ID
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Language ID
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Sentiment analysis
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Sentiment analysis
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Topic classification
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MeSH Subject Category Hierarchy
● Antagonists and Inhibitors
● Blood Supply
● Chemistry
● Drug Therapy
● Embryology
● Epidemiology
● …


