

Natural Language Processing

Text classification,

Generative vs Discriminative models, Naive Bayes

Yulia Tsvetkov

yuliats@cs.washington.edu

1

Announcements

- HW1 overview
- Quiz 1 is on Friday

Readings

- Eis 2 <https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf>
- J&M III 4 <https://web.stanford.edu/~jurafsky/slp3/4.pdf>
- Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? Sentiment Classification using Machine Learning Techniques. In Proceedings of EMNLP, 2002
- Andrew Y. Ng and Michael I. Jordan, On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes, In Proceedings of NeurIPS, 2001.

Over the next couple of classes, we'll investigate:

How do we "digest" text into a form usable by a function?

(Keywords for this section: features, feature extraction,

feature selection, representations)

2. What kinds of strategies might we use to create our function *f?*

(Keyword for this section: models)

3. How do we evaluate our function *f?*

(Keyword for this section: … evaluation)

Learning-based classification

pick the function *f* that does "best" on training data

Goal: create a function *f* that makes a prediction *ŷ* given an input *x*

Classification: learning from data

- **Supervised**
	- labeled examples
		- Binary (true, false)
		- Multi-class classification (politics, sports, gossip)
		- Multi-label classification (#party #FRIDAY #fail)
- **•** Unsupervised
	- no labeled examples
- Semi-supervised
	- \circ labeled examples + non-labeled examples
- Weakly supervised
	- heuristically-labeled examples

Where do datasets come from?

Supervised classification

Training, validation, and test sets

unlabeled data

inference

Supervised classification: formal setting

- Learn a classification model from labeled data on
	- properties ("**features**") and their importance ("**weights**")
- X: set of attributes or features $\{x_1, x_2, ..., x_n\}$
	- e.g. fruit measurements, or word counts extracted from an input documents
- y: a "class" label from the label set $Y = \{y_1, y_2, ..., y_k\}$
	- e.g., fruit type, or spam/not spam, positive/negative/neutral

Supervised classification: formal setting

- Learn a classification model from labeled data on
	- properties ("features") and their importance ("weights")
- X: set of attributes or features $\{x_1, x_2, ..., x_n\}$
	- e.g. fruit measurements, or word counts extracted from an input documents
- y: a "class" label from the label set $Y = \{y_1, y_2, ..., y_k\}$
	- e.g., fruit type, or spam/not spam, positive/negative/neutral

- Given data samples $\{x_1, x_2, ..., x_n\}$ and corresponding labels $Y = \{y_1, y_2, ..., y_k\}$
- We train a function $f: x \in X \rightarrow y \in Y$ (the model)

Supervised classification: formal setting

- Learn a classification model from labeled data on
	- properties ("features") and their importance ("weights")
- X: set of attributes or features $\{x_1, x_2, ..., x_n\}$
	- e.g. fruit measurements, or word counts extracted from an input documents
- y: a "class" label from the label set $Y = \{y_1, y_2, ..., y_k\}$
	- e.g., fruit type, or spam/not spam, positive/negative/neutral

• At inference time, apply the model on new instances to predict the label

We'll consider alternative models for classification

Generative and discriminative models

• Generative model: a model that calculates the probability of the input data itself

 $P(X, Y)$ joint

● Discriminative model: a model that calculates the probability of a latent trait given the data

$P(Y | X)$ conditional

Generative and discriminative models

imagenet

imagenet

Generative model

- Build a model of what's in a cat image
	- Knows about whiskers, ears, eyes
	- Assigns a probability to any image:
	- \circ how cat-y is this image?
- Also build a model for dog images

imagenet

imagenet

Now given a new image:

Run both models and see which one fits better

Discriminative model

Just try to distinguish dogs from cats

Oh look, dogs have collars! Let's ignore everything else

Generative vs discriminative models

<https://blog.dailydoseofds.com/p/an-intuitive-guide-to-generative>

<https://medium.com/@jordi299/about-generative-and-discriminative-models-d8958b67ad32>

Yulia Tsvetkov Undergrad NLP

Generative and discriminative models

• Generative text classification: Learn a model of the joint $P(X, y)$, and find

$$
\hat{y} = \operatornamewithlimits{argmax}_{\tilde{y}} \ P(X, \tilde{y})
$$

• Discriminative text classification: Learn a model of the conditional $P(y | X)$, and find

$$
\hat{y} = \operatorname*{argmax}_{\tilde{y}} P(\tilde{y}|X)
$$

Finding the correct class c from a document d in Generative vs Discriminative Classifiers

● Naive Bayes

likelihood prior

$$
\hat{c} = \underset{c \in C}{\operatorname{argmax}} \quad \widetilde{P(d|c)} \quad \widetilde{P(c)}
$$

● Logistic Regression

posterior
\n
$$
\hat{c} = \underset{c \in C}{\operatorname{argmax}} \quad P(c|d)
$$

We'll consider alternative models for classification

Generative text classification: naïve Bayes

- Simple classification method
	- based on the Bayes rule
- Relies on very simple (naïve) representation of a documents
	- Conditional independence assumption:

the features are conditionally independent, given the target class (hence the name "naïve")

- bag-of-words, no relative order
- A good baseline for more sophisticated models

Andrew Y. Ng and Michael I. Jordan, On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes, Advances in Neural Information Processing Systems 14 (NIPS), 2001.

Sentiment analysis: movie reviews

- \bullet Given a document d (e.g., a movie review)
- Decide which class c it belongs to: positive, negative, neutral
- Compute $P(c | d)$ for each c
	- \circ P(positive | d), P(negative | d), P(neutral | d)
	- select the one with max P

Bag-of-Words (BOW)

• Given a document d (e.g., a movie review) – how to represent d ?

Intuition of the multinomial naive Bayes classifier applied to a movie review. The position of the Figure 7.1 words is ignored (the *bag of words* assumption) and we make use of the frequency of each word.

Figure from J&M 3rd ed. draft, sec 7.1

• Given a document d and a class c, use Bayes' rule:

$$
P(c|d) = \frac{P(d|c)P(c)}{P(d)}
$$

posterior

• Given a document d and a class c, Bayes' rule:

$$
P(c|d) = \frac{P(d|c)P(c)}{P(d)}
$$

$$
P("positive"|d) \propto P(d|"positive")P("positive")
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
\text{posterior} \qquad \qquad \text{likelihood} \qquad \text{prior}
$$

• Given a document d and a class c, Bayes' rule:

$$
P(c|d) = \frac{P(d|c)P(c)}{P(d)}
$$

• Given a document d and a class c, Bayes' rule:

$$
P(c|d) = \frac{P(d|c)P(c)}{P(d)}
$$

$$
P("positive"|d) \propto P(d| "positive")P("positive")
$$

likelihood

Naïve Bayes independence assumptions

$$
P(w_1, w_2, \ldots, w_n|c)
$$

- **Bag of Words assumption: Assume position doesn't matter**
- **Conditional Independence**: Assume the feature probabilities $P(w_i | c_j)$ are independent given the class c

$$
P(w_1, w_2, \ldots, w_n|c) = P(w_1|c) \times P(w_2|c) \times P(w_3|c) \times \ldots \times P(w_n|c)
$$

Document representation

I love this movie. It's sweet but with satirical humor. The dialogue is great and the adventure scenes are fun… it manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

34.

 \mathbf{C}

(BOW)

Document representation

I love this movie. It's sweet but with satirical humor. The dialogue is great and the adventure scenes are fun… it manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

$$
P(d|c) = P(w_1, w_2, \ldots, w_n|c) = \prod_i P(w_i|c)
$$

Generative text classification: Naïve Bayes

$$
C_{NB} = \underset{c}{\operatorname{argmax}} P(c|d) = \underset{c}{\operatorname{argmax}} \frac{P(d|c)P(c)}{P(d)} \propto \text{ Bayes rule}
$$
\n
$$
\underset{c}{\operatorname{argmax}} P(d|c)P(c) = \underset{c}{\operatorname{argmax}} P(w_1, w_2, \dots, w_n|c)P(c) = \underset{c}{\operatorname{argmax}} P(c_j) \prod_i P(w_i|c) \qquad \text{conditional independence}
$$

Underflow prevention: log space

- Multiplying lots of probabilities can result in floating-point underflow
- Since $log(xy) = log(x) + log(y)$
	- better to sum logs of probabilities instead of multiplying probabilities
- Class with highest un-normalized log probability score is still most probable

$$
C_{NB} = \underset{c_j}{\text{argmax}} P(c_j) \prod_i P(w_i|c)
$$

$$
C_{NB} = \underset{c_j}{\text{argmax}} log(P(c_j)) + \sum_i log(P(w_i|c))
$$

Model is now just max of sum of weights

Learning the multinomial naïve Bayes

• How do we learn (train) the NB model?

Learning the multinomial naïve Bayes

- How do we learn (train) the NB model?
- We learn $P(c)$ and $P(w_i|c)$ from training (labeled) data

$C_{NB} = \text{argmax} log(P(c_j)) + \sum_i log(P(w_i|c))$ c_i

Parameter estimation for NB

- Parameter estimation during training
- Concatenate all documents with category c into one mega-document
- \bullet Use the frequency of w_i in the mega-document to estimate the word probability

$$
C_{NB} = \underset{c_j}{\text{argmax}} log(P(c_j)) + \sum_i log(P(w_i|c))
$$

$$
\hat{P}(c_j) = \frac{doccount(C = c_j)}{N_{doc}} \qquad \hat{P}(w_i|c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}
$$

Parameter estimation for NB

$$
\hat{P}(w_i|c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}
$$

- fraction of times word w_i appears among all words in documents of topic c_j
- Create mega-document for topic j by concatenating all docs in this topic
	- \circ Use frequency of w in mega-document

Problem with Maximum Likelihood

● What if we have seen no training documents with the word "fantastic" and classified in the topic positive?

Problem with Maximum Likelihood

• What if we have seen no training documents with the word "fantastic" and classified in the topic positive?

$$
\hat{P}("fantastic" | c = positive) = \frac{count("fantastic", positive)}{\sum_{w \in V} count(w, positive)} = 0
$$

• Zero probabilities cannot be conditioned away, no matter the other evidence!

$$
\underset{c_j}{\text{argmax}} P(c_j) \prod_i P(w_i|c)
$$

Laplace (add-1) smoothing for naïve Bayes

$$
\hat{P}(w_i|c_j) = \frac{count(w_i, c_j) + 1}{\sum_{w \in V}(count(w, c_j) + 1)}
$$

Laplace (add-1) smoothing for naïve Bayes

$$
\hat{P}(w_i|c_j) = \frac{count(w_i, c_j) + 1}{\sum_{w \in V}(count(w, c_j) + 1)}
$$

$$
= \frac{count(w_i, c_j) + 1}{(\sum_{w \in V}(count(w, c_j)) + |V|)}
$$

• Note about log space

Multinomial naïve Bayes : learning

- From training corpus, extract *Vocabulary*
- Calculate $P(c_j)$ terms
	- For each c_j do

\n- $$
\text{docs}_j \leftarrow \text{all docs with class} = c_j
$$
\n- $P(c_j) \leftarrow \frac{|docs_j|}{total \# documents}$
\n

Multinomial naïve Bayes : learning

- From training corpus, extract *Vocabulary*
- Calculate $P(c_j)$ terms
	- For each c_j do

\n- $$
\text{docs}_j \leftarrow \text{all docs with class} = c_j
$$
\n- $P(c_j) \leftarrow \frac{|docs_j|}{total \# documents}$
\n

- Calculate $P(w_i | c_j)$ terms
	- *Text_j* ← single doc containing all docs_j
	- o For each word \mathbf{w}_i in *Vocabulary*

\n- $$
n_i \leftarrow \# \text{ of occurrences of } W_i \text{ in } \text{Text}_j
$$
\n- $P(w_j | c_j) \leftarrow \frac{n_i + \alpha}{n + \alpha | Vocabulary |}$
\n

Example

Priors: $P(c) = \frac{3}{4}$
 $P(j) = \frac{3}{4}$

PAUL G. ALLEN SCHOOL

Class

Example

$$
\hat{P}(c) = \frac{N_c}{N}
$$

 $Doc \vert$

Words

Priors:

 $P(c)=$
 $P(j)=$ $\frac{3}{4}$ $\frac{1}{4}$

Conditional Probabilities:

PAUL G. ALLEN SCHOOL

Example

$$
\hat{P}(c) = \frac{N_c}{N} \qquad \hat{P}(w \mid c) = \frac{count(w, c) + 1}{count(c) + |V|}
$$

Priors:

 $\frac{3}{4}$ $\frac{1}{4}$ $P(c)=$
 $P(j)=$

Conditional Probabilities:

$$
P(\text{Chinese} | c) = (5+1) / (8+6) = 6/14 = 3/7
$$

\n
$$
P(\text{Tokyo} | c) = (0+1) / (8+6) = 1/14
$$

\n
$$
P(\text{Japan} | c) = (0+1) / (8+6) = 1/14
$$

\n
$$
P(\text{Chinese} | j) = (1+1) / (3+6) = 2/9
$$

\n
$$
P(\text{Tokyo} | j) = (1+1) / (3+6) = 2/9
$$

\n
$$
P(\text{Japan} | j) = (1+1) / (3+6) = 2/9
$$

Choosing a class: $P(c|d5) \propto 3/4 * (3/7)^{3} * 1/14 * 1/14$ ≈ 0.0003

 $P(j|d5) \propto 1/4 * (2/9)^{3} * 2/9 * 2/9$ ≈ 0.0001

Summary: naïve Bayes is not so naïve

- Naïve Bayes is a probabilistic model
- Naïve because is assumes features are independent of each other for a class
- Very fast, low storage requirements
- **Robust to Irrelevant Features**
	- Irrelevant Features cancel each other without affecting results
- Very good in domains with many equally important features
	- Decision Trees suffer from fragmentation in such cases especially if little data
- Optimal if the independence assumptions hold: If assumed independence is correct, then it is the Bayes Optimal Classifier for problem
- A good dependable baseline for text classification
	- But we will see other classifiers that give better accuracy