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How do we evaluate our function f?
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Classification evaluation
● Contingency table: model’s predictions are compared to the correct results

○ a.k.a. confusion matrix
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Classification evaluation
● Borrowing from Information Retrieval, empirical NLP systems are usually 

evaluated using the notions of precision and recall
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Classification evaluation
● Precision (P) is the proportion of the selected items that the system got right in 

the case of text categorization
○ it is the % of documents classified as “positive” by the system which are indeed 

“positive” documents
● Reported per class or average
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Classification evaluation
● Recall (R) is the proportion of actual items that the system selected in the case 

of text categorization
○ it is the % of the “positive” documents which were actually classified as “positive” by 

the system
● Reported per class or average
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Classification evaluation
● We often want to trade-off precision and recall

○ typically: the higher the precision the lower the recall
○ can be plotted in a precision-recall curve

● It is convenient to combine P and R into a single measure
○ one possible way to do that is F measure
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Classification evaluation
● Additional measures of performance: accuracy and error

○ accuracy is the proportion of items the system got right
○ error is its complement
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Micro- vs. macro-averaging
If we have more than one class, how do we combine multiple performance measures 
into one quantity?

● Macroaveraging
○ Compute performance for each class, then average.

● Microaveraging
○ Collect decisions for all classes, compute contingency table, evaluate.
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Classification common practices
● Divide the training data into k folds (e.g., k=10)
● Repeat k times: train on k-1 folds and test on the holdout fold, cyclically
● Average over the k folds’ results
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K-fold cross-validation
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K-fold cross-validation
● Metric: P/R/F1 or Accuracy
● Unseen test set

○ avoid overfitting (‘tuning to the test set’)
○ more conservative estimate of performance

● Cross-validation over multiple splits
■ Handles sampling errors from different datasets

○ Pool results over each split
○ Compute pooled dev set performance
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● Probabilistic

Next class: Logistic regression
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● Rule-based 

● Generative models ● Discriminative models

● Linear models
○ Multinomial logistic regression 

(aka MaxEnt)

● Non-linear models
○ Multilayer perceptron

● Supervised text classification

● Naïve Bayes
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Logistic regression classifier
● Important analytic tool in natural and social sciences
● Baseline supervised machine learning tool for classification
● Is also the foundation of neural networks
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● Probabilistic

Next class: Logistic regression
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● Generative models ● Discriminative models

● Linear models
○ Multinomial logistic regression 

(aka MaxEnt)

● Non-linear models
○ Multilayer perceptron
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Readings
● J&M Chapter 5 https://web.stanford.edu/~jurafsky/slp3/5.pdf
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Logistic regression classifier
● Important analytic tool in natural and social sciences
● Baseline supervised machine learning tool for classification
● Is also the foundation of neural networks
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Text classification
Input: 

● a document d (e.g., a movie review)

● a fixed set of classes C = {c1, c2, … cj} (e.g., positive, negative, neutral)

Output

● a predicted class ŷ ∈ C
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Binary classification in logistic regression
● Given a series of input/output pairs:

○ (x(i), y(i)) 

● For each observation x(i)

○ We represent x(i) by a feature vector {x1, x2, …, xn}
○ We compute an output: a predicted class ŷ(i) ∈ {0,1}
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Features in logistic regression

● For feature xi∈{x1, x2, …, xn}, weight wi ∈{w1, w2, …, wn}
tells us how important is xi
○ xi = "review contains ‘awesome’": wi = +10
○ xj = "review contains horrible": wj = -10
○ xk = “review contains ‘mediocre’": wk = -2
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Logistic Regression for one observation x
● Input observation: vector x(i) = {x1, x2, …, xn}

● Weights: one per feature: W = [w1, w2,…, wn]
○ Sometimes we call the weights θ = [θ1, θ2,…, θn] 

● Output: a predicted class ŷ(i) ∈ {0,1}

multinomial logistic regression: ŷ(i) ∈ {0,1, 2, 3, 4}
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How to do classification
● For each feature xi, weight wi tells us importance of xi

○ (Plus we'll have a bias b)
○ We'll sum up all the weighted features and the bias

If this sum is high, we say y=1; if low, then y=0
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But we want a probabilistic classifier
We need to formalize “sum is high”

● We’d like a principled classifier that gives us a probability, just like Naive Bayes 
did

● We want a model that can tell us:
○ p(y=1|x; θ)
○ p(y=0|x; θ)
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The problem: z isn't a probability, it's just a number!

● z ranges from -∞ to ∞

● Solution: use a function of z that goes from 0 to 1
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The very useful sigmoid or logistic function
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Idea of logistic regression
● We’ll compute w∙x+b
● And then we’ll pass it through the sigmoid function: 

● And we'll just treat it as a probability

26



Undergrad NLP Yulia Tsvetkov

Making probabilities with sigmoids

27



Undergrad NLP Yulia Tsvetkov

Making probabilities with sigmoids
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By the way:
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Turning a probability into a classifier

● 0.5 here is called the decision boundary
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The probabilistic classifier 
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Turning a probability into a classifier

if w∙x+b > 0

if w∙x+b ≤ 0
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Sentiment example: does y=1 or y=0?
It's hokey . There are virtually no surprises , and the writing is second-rate .  So why was it so 
enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was 
overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do 
the same to you .
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Classifying sentiment for input x

Suppose w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7] 
b = 0.1
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Classifying sentiment for input x
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Scaling input features
● z-score

● normalize
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Wait, where did the W’s come from?
● Supervised classification:

○ At training time we know the correct label y (either 0 or 1) for each x.
○ But what the system produces at inference time is an estimate ŷ
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Wait, where did the W’s come from?
● Supervised classification:

○ A training time we know the correct label y (either 0 or 1) for each x.
○ But what the system produces at inference time is an estimate ŷ

● We want to set w and b to minimize the distance between our estimate ŷ(i) and 
the true y(i)

○ We need a distance estimator: a loss function or a cost function
○ We need an optimization algorithm to update w and b to minimize the loss
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Learning components in LR
A loss function: 

● cross-entropy loss 

An optimization algorithm: 

● stochastic gradient descent
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Loss function: the distance between ŷ and y
We want to know how far is the classifier output ŷ 

from the true output: y [= either 0 or 1]

We'll call this difference: L(ŷ,y) = how much ŷ differs from the true y
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Intuition of negative log likelihood loss (NLL) = 
cross-entropy loss
A case of conditional maximum likelihood estimation

We choose the parameters w,b that maximize

● the log probability
● of the true y labels in the training data
● given the observations x
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Next class: 
● Deriving cross-entropy loss (please review Bernoulli distribution before class) 
● Stochastic gradient descent
● Softmax
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