

Natural Language Processing

Logistic Regression

Yulia Tsvetkov

yuliats@cs.washington.edu

Components of a probabilistic machine learning classifier

Given m input/output pairs $(x^{(i)}, y^{(i)})$:

- 1. A **feature representation** for the input. For each input observation $x^{(i)}$, a vector of features $[x_1, x_2, ..., x_n]$. Feature j for input $x^{(i)}$ is x_j , more completely $x_1^{(i)}$, or sometimes $f_j(x)$.
- 2. A classification function that computes \hat{y} the estimated class, via p(y|x), like the sigmoid functions
- An objective function for learning [today]
- 4. An algorithm for **optimizing** the objective function [Friday]

Sentiment example: does y=1 or y=0?

It's hokey . There are virtually no surprises , and the writing is second-rate . So why was it so enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do the same to you .

$$x_3 = 1$$
It's holow There are virtually no surprises and the writing

It's hokey. There are virtually no surprises, and the writing is cond-rate. So why was it so enjoyable? For one thing, the cast is great. Another nice touch is the music Dwas overcome with the urge to get off the couch and start, dancing. It sucked me in , and it'll do the same to out.

$$x_1=3$$
 $x_5=0$ $x_6=4.19$ $x_4=3$.

Var	Definition	Value
$\overline{x_1}$	$count(positive lexicon) \in doc)$	3
x_2	$count(negative lexicon) \in doc)$	2
x_3	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
x_4	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	log(word count of doc)	ln(66) = 4.19

Classifying sentiment for input x

Var	Definition	Value
$\overline{x_1}$	$count(positive lexicon) \in doc)$	3
x_2	$count(negative lexicon) \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
x_4	$count(1st \text{ and } 2nd \text{ pronouns} \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	log(word count of doc)	ln(66) = 4.19

$$\mathbf{w} = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7]$$

 $\mathbf{b} = 0.1$

Logistic Regression for one observation x

- Input observation: vector $\mathbf{x}^{(i)} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$
- Weights: one per feature: $W = [w_1, w_2, ..., w_n]$
 - Sometimes we call the weights $\theta = [\theta_1, \theta_2, ..., \theta_n]$
- Output: a predicted class $\hat{\mathbf{y}}^{(i)} \in \{0,1\}$

multinomial logistic regression: $\hat{\mathbf{y}}^{(i)} \in \{0,1,2,3,4\}$

How to do classification

- For each feature x_i , weight w_i tells us importance of x_i
 - (Plus we'll have a bias b)
 - We'll sum up all the weighted features and the bias

$$z = \left(\sum_{i=1}^{n} w_i x_i\right) + b$$
$$z = w \cdot x + b$$

If this sum is high, we say y=1; if low, then y=0

But we want a probabilistic classifier

We need to formalize "sum is high"

- We'd like a principled classifier that gives us a probability, just like Naive Bayes did
- We want a model that can tell us:
 - \circ p(y=1|x; θ)
 - \circ p(y=0|x; θ)

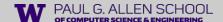
The problem: z isn't a probability, it's just a number!

z ranges from -∞ to ∞

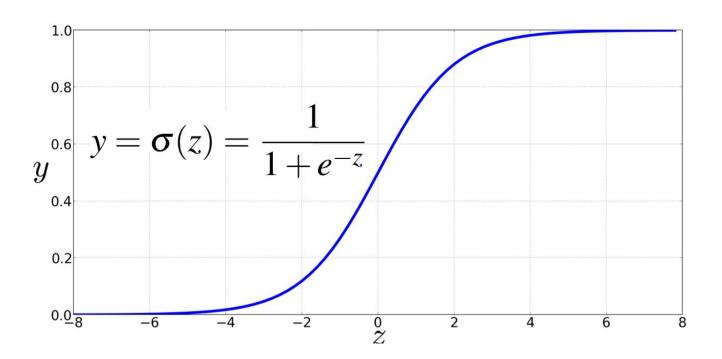
$$z = w \cdot x + b$$

Solution: use a function of z that goes from 0 to 1

$$y = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-z)}$$



The very useful sigmoid or logistic function



Idea of logistic regression

- We'll compute w·x+b
- And then we'll pass it through the sigmoid function:

$$\sigma(w\cdot x+b)$$

And we'll just treat it as a probability

Making probabilities with sigmoids

$$P(y=1) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + \exp(-(w \cdot x + b))}$$

Making probabilities with sigmoids

$$P(y=1) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$P(y=0) = 1 - \sigma(w \cdot x + b)$$

$$= 1 - \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$= \frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))}$$

By the way:

$$P(y=0) = 1 - \sigma(w \cdot x + b) = \sigma(-(w \cdot x + b))$$

$$= 1 - \frac{1}{1 + \exp(-(w \cdot x + b))}$$
Because
$$= \frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))}$$

$$= \frac{1 - \sigma(x) = \sigma(-x)}{1 + \exp(-(w \cdot x + b))}$$

Undergrad NLP 14

Turning a probability into a classifier

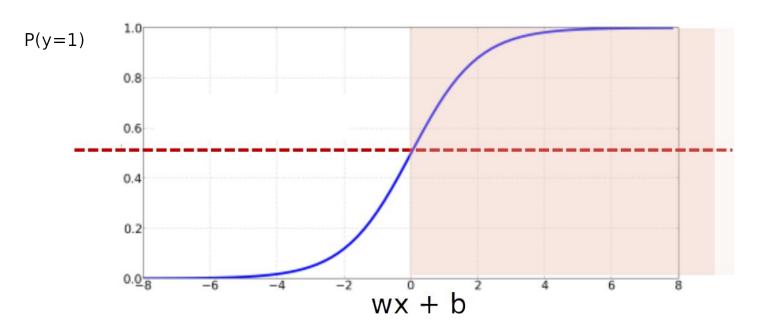
$$\hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

0.5 here is called the decision boundary

The probabilistic classifier

$$P(y=1) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + \exp\left(-(w \cdot x + b)\right)}$$



Turning a probability into a classifier

$$\hat{y} = \begin{cases} 1 & \text{if } P(y = 1|x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$
 if $w \cdot x + b > 0$ if $w \cdot x + b \le 0$

Scaling input features

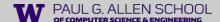
z-score

$$\mu_i = \frac{1}{m} \sum_{j=1}^m x_i^{(j)} \qquad \sigma_i = \sqrt{\frac{1}{m} \sum_{j=1}^m \left(\mathbf{x}_i^{(j)} - \mu_i\right)}$$

$$\mathbf{x}_i' = \frac{\mathbf{x}_i - \mu_i}{\sigma_i}$$

normalize

$$\mathbf{x}_i' = \frac{\mathbf{x}_i - \min(\mathbf{x}_i)}{\max(\mathbf{x}_i) - \min(\mathbf{x}_i)}$$



Wait, where did the W's come from?

- Supervised classification:
 - A training time we know the correct label y (either 0 or 1) for each x.
 - \circ But what the system produces at inference time is an estimate $\hat{\mathbf{y}}$

Wait, where did the W's come from?

- Supervised classification:
 - A training time we know the correct label y (either 0 or 1) for each x.
 - But what the system produces at inference time is an estimate $\hat{\mathbf{v}}$

- We want to set w and b to minimize the **distance** between our estimate $\hat{\mathbf{y}}^{(i)}$ and the true v⁽¹⁾
 - We need a distance estimator: a **loss function** or a cost function
 - We need an **optimization algorithm** to update w and b to minimize the loss

Components of a probabilistic machine learning classifier

Given m input/output pairs $(x^{(i)}, y^{(i)})$:

- A **feature representation** for the input. For each input observation $x^{(i)}$, a vector of features $[x_1, x_2, ..., x_n]$. Feature j for input $x^{(i)}$ is x_i , more completely $x_1^{(i)}$, or sometimes $f_i(x)$.
- A classification function that computes \hat{y} the estimated class, via p(y|x), like the **sigmoid** functions
- An objective function for learning, like cross-entropy loss
- An algorithm for **optimizing** the objective function: **stochastic gradient** descent [next class]

Learning components in LR

A loss function:

cross-entropy loss

An optimization algorithm:

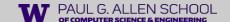
stochastic gradient descent

Loss function: the distance between ŷ and y

We want to know how far is the classifier output $\hat{\mathbf{y}} = \sigma(w \cdot x + b)$

from the true output: y = either 0 or 1

We'll call this difference: $L(\hat{y}, y) = \text{how much } \hat{y} \text{ differs from the true } y$



Intuition of negative log likelihood loss = cross-entropy loss

A case of conditional maximum likelihood estimation

We choose the parameters w,b that maximize

- the log probability
- of the true y labels in the training data
- given the observations x

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can express the probability p(y|x) from our classifier (the thing we want to maximize) as

$$p(y|x) = \hat{y}^y (1-\hat{y})^{1-y}$$

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can express the probability p(y|x) from our classifier (the thing we want to maximize) as

$$p(y|x) = \hat{y}^y (1-\hat{y})^{1-y}$$

Noting:

if y=1, this simplifies to \hat{y}

if y=0, this simplifies to $1 - \hat{y}$

Goal: maximize probability of the correct label p(y|x)

Maximize: $p(y|x) = \hat{y}^y (1 - \hat{y})^{1-y}$

Goal: maximize probability of the correct label p(y|x)

Maximize: $p(y|x) = \hat{y}^y (1 - \hat{y})^{1-y}$

Now take the log of both sides (mathematically handy)

Maximize:
$$\log p(y|x) = \log [\hat{y}^y (1-\hat{y})^{1-y}]$$

= $y \log \hat{y} + (1-y) \log (1-\hat{y})$

Goal: maximize probability of the correct label p(y|x)

Maximize:
$$p(y|x) = \hat{y}^y (1-\hat{y})^{1-y}$$

Now take the log of both sides (mathematically handy)

Maximize:
$$\log p(y|x) = \log [\hat{y}^y (1-\hat{y})^{1-y}]$$

= $y \log \hat{y} + (1-y) \log (1-\hat{y})$

Whatever values maximize $\log p(y|x)$ will also maximize p(y|x)

Goal: maximize probability of the correct label p(y|x)

Maximize:
$$\log p(y|x) = \log [\hat{y}^y (1-\hat{y})^{1-y}]$$

= $y \log \hat{y} + (1-y) \log (1-\hat{y})$

Now flip sign to turn this into a loss: something to minimize

Goal: maximize probability of the correct label p(y|x)

Maximize:
$$\log p(y|x) = \log [\hat{y}^y (1-\hat{y})^{1-y}]$$

= $y \log \hat{y} + (1-y) \log (1-\hat{y})$

Now flip sign to turn this into a loss: something to minimize

Minimize:
$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

Goal: maximize probability of the correct label p(y|x)

Maximize:
$$\log p(y|x) = \log [\hat{y}^y (1-\hat{y})^{1-y}]$$

= $y \log \hat{y} + (1-y) \log (1-\hat{y})$

Now flip sign to turn this into a cross-entropy loss: something to minimize

Minimize:
$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

Goal: maximize probability of the correct label p(y|x)

Maximize:
$$\log p(y|x) = \log [\hat{y}^y (1-\hat{y})^{1-y}]$$

= $y \log \hat{y} + (1-y) \log (1-\hat{y})$

Now flip sign to turn this into a cross-entropy loss: something to minimize

Minimize:
$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

Or, plug in definition of $\hat{y} = \sigma(w \cdot x + b)$

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

Let's see if this works for our sentiment example

We want loss to be:

- smaller if the model estimate $\hat{\mathbf{y}}$ is close to correct
- bigger if model is confused

Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises , and the writing is second-rate . So why was it so enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do the same to you .

Let's see if this works for our sentiment example

True value is y=1 (positive). How well is our model doing?

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$

$$= \sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$$

$$= \sigma(.833)$$

$$= 0.70$$

Pretty well!

Let's see if this works for our sentiment example

True value is y=1 (positive). How well is our model doing?

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$

$$= \sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$$

$$= \sigma(.833)$$

$$= 0.70$$

Pretty well! What's the loss?

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

$$= -[\log \sigma(\mathbf{w} \cdot \mathbf{x} + b)]$$

$$= -\log(.70)$$

$$= .36$$

Let's see if this works for our sentiment example

Suppose the true value instead was y=0 (negative).

$$p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$$

= 0.30

Yulia Tsvetkov Undergrad NLP

Let's see if this works for our sentiment example

Suppose the true value instead was y=0 (negative).

$$p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$$

= 0.30

What's the loss?

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

$$= -[\log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

$$= -\log (.30)$$

$$= 1.2$$

Yulia Tsvetkov 38 Undergrad NLP

Let's see if this works for our sentiment example

The loss when the model was right (if true y=1)

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

$$= -[\log \sigma(\mathbf{w} \cdot \mathbf{x} + b)]$$

$$= -\log(.70)$$

$$= .36$$

The loss when the model was wrong (if true y=0)

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

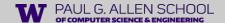
$$= -[\log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

$$= -\log (.30)$$

$$= 1.2$$

Sure enough, loss was bigger when model was wrong!

Yulia Tsvetkov 39 Undergrad NLP



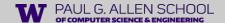
Learning components

A loss function:

cross-entropy loss

An optimization algorithm:

stochastic gradient descent



Stochastic Gradient Descent

- Stochastic Gradient Descent algorithm
 - is used to optimize the weights
 - for logistic regression
 - also for neural networks

Yulia Tsvetkov 41 Undergrad NLP

Our goal: minimize the loss

Let's make explicit that the loss function is parameterized by weights $\theta = (w,b)$

• And we'll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious

We want the weights that minimize the loss, averaged over all examples:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} L_{CE}(f(x^{(i)}; \theta), y^{(i)})$$

$$L_{CE}(\hat{y}, y)$$

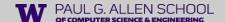
Yulia Tsvetkov 42 Undergrad NLP

Intuition of gradient descent

How do I get to the bottom of this river canyon?

Look around me 360°

Find the direction of steepest slope down Go that way



Our goal: minimize the loss

For logistic regression, loss function is **convex**

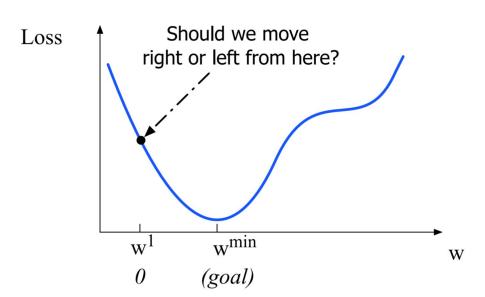
- A convex function has just one minimum
- Gradient descent starting from any point is guaranteed to find the minimum
 - (Loss for neural networks is non-convex)

Yulia Tsvetkov 44 Undergrad NLP

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

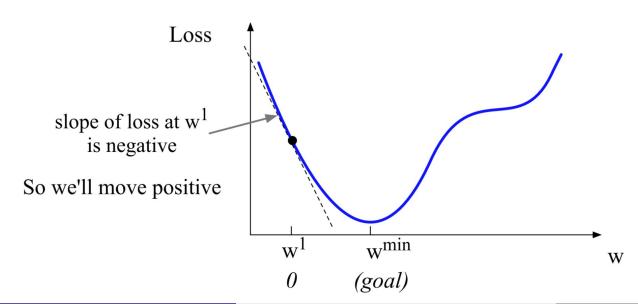


Yulia Tsvetkov 45 Undergrad NLP

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

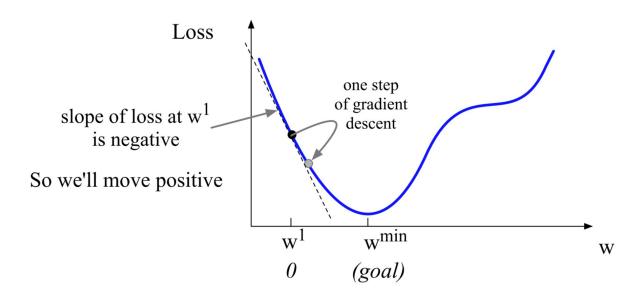


Yulia Tsvetkov 46 Undergrad NLP

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function



Yulia Tsvetkov 47 Undergrad NLP

Gradients

The **gradient** of a function of many variables is a vector pointing in the direction of the greatest increase in a function.

Gradient Descent: Find the gradient of the loss function at the current point and move in the **opposite** direction.

Yulia Tsvetkov 48 Undergrad NLP

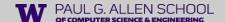
How much do we move in that direction?

- The value of the gradient (slope in our example) $\frac{d}{dw}L(f(x;w),y)$
 - weighted by a learning rate n

Higher learning rate means move w faster

$$w^{t+1} = w^t - \eta \frac{d}{dw} L(f(x; w), y)$$

Yulia Tsvetkov Undergrad NLP 49

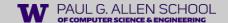


Now let's consider N dimensions

We want to know where in the N-dimensional space (of the N parameters that make up θ) we should move.

The gradient is just such a vector; it expresses the directional components of the sharpest slope along each of the N dimensions.

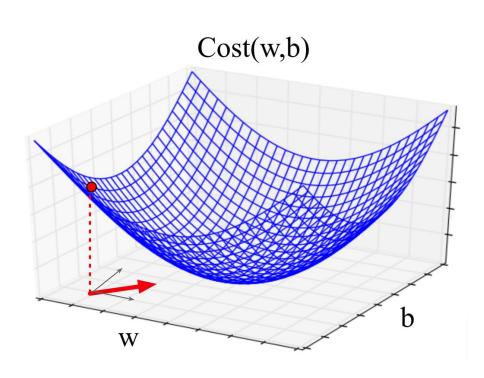
Yulia Tsvetkov 50 Undergrad NLP



Imagine 2 dimensions, w and b

Visualizing the gradient vector at the red point

It has two dimensions shown in the x-y plane



Yulia Tsvetkov 51 Undergrad NLP

Real gradients

Are much longer; lots and lots of weights

For each dimension $\mathbf{w_i}$ the gradient component \mathbf{i} tells us the slope with respect to that variable.

- "How much would a small change in w_i influence the total loss function L?"
- We express the slope as a partial derivative $\frac{\partial}{\partial w_i}$ of the loss $\frac{\partial w_i}{\partial w_i}$

The gradient is then defined as a vector of these partials.

The gradient

We'll represent $\hat{\mathbf{y}}$ as $f(\mathbf{x}; \boldsymbol{\theta})$ to make the dependence on $\boldsymbol{\theta}$ more obvious:

$$\nabla_{\theta} L(f(x;\theta),y)) = \begin{bmatrix} \frac{\partial}{\partial w_1} L(f(x;\theta),y) \\ \frac{\partial}{\partial w_2} L(f(x;\theta),y) \\ \vdots \\ \frac{\partial}{\partial w_n} L(f(x;\theta),y) \end{bmatrix}$$

The final equation for updating θ based on the gradient is thus:

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y)$$

Yulia Tsvetkov 53 Undergrad NLP

What are these partial derivatives for logistic regression?

The loss function

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

The elegant derivative of this function (see Section 5.10 for the derivation)

$$\frac{\partial L_{\text{CE}}(\hat{\mathbf{y}}, \mathbf{y})}{\partial w_j} = [\boldsymbol{\sigma}(w \cdot \mathbf{x} + b) - \mathbf{y}] x_j$$
$$= (\hat{\mathbf{y}} - \mathbf{y}) \mathbf{x}_j$$

Yulia Tsvetkov Undergrad NLP

```
function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns \theta
     # where: L is the loss function
             f is a function parameterized by \theta
             x is the set of training inputs x^{(1)}, x^{(2)}, ..., x^{(m)}
             y is the set of training outputs (labels) y^{(1)}, y^{(2)}, ..., y^{(m)}
\theta \leftarrow 0
repeat til done
   For each training tuple (x^{(i)}, y^{(i)}) (in random order)
      1. Optional (for reporting):
                                               # How are we doing on this tuple?
         Compute \hat{y}^{(i)} = f(x^{(i)}; \theta)
                                               # What is our estimated output \hat{y}?
         Compute the loss L(\hat{y}^{(i)}, y^{(i)})
                                               # How far off is \hat{y}^{(i)}) from the true output y^{(i)}?
      2. g \leftarrow \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})
                                               # How should we move \theta to maximize loss?
      3. \theta \leftarrow \theta - \eta g
                                               # Go the other way instead
```

Yulia Tsvetkov 55 Undergrad NLP

return θ

Hyperparameters

The learning rate η is a hyperparameter

- too high: the learner will take big steps and overshoot
- too low: the learner will take too long

Hyperparameters:

- Briefly, a special kind of parameter for an ML model
- Instead of being learned by algorithm from supervision (like regular parameters), they are chosen by algorithm designer.

Yulia Tsvetkov 56 Undergrad NLP

Mini-batch training

Stochastic gradient descent chooses a single random example at a time.

That can result in choppy movements

More common to compute gradient over batches of training instances.

Batch training: entire dataset

Mini-batch training: m examples (512, or 1024)

Yulia Tsvetkov 57 Undergrad NLP

Overfitting

A model that perfectly match the training data has a problem.

It will also overfit to the data, modeling noise

- A random word that perfectly predicts y (it happens to only occur in one class)
 will get a very high weight.
- Failing to generalize to a test set without this word.

A good model should be able to **generalize**

Regularization

A solution for overfitting

Add a **regularization** term $R(\theta)$ to the loss function (for now written as maximizing logprob rather than minimizing loss)

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{m} \log P(y^{(i)}|x^{(i)}) - \alpha R(\theta)$$

Idea: choose an $R(\theta)$ that penalizes large weights

 fitting the data well with lots of big weights not as good as fitting the data a little less well, with small weights

Yulia Tsvetkov 59 Undergrad NLP

L2 regularization (ridge regression)

The sum of the squares of the weights

$$R(\theta) = ||\theta||_2^2 = \sum_{j=1}^n \theta_j^2$$

L2 regularized objective function:

$$\hat{\theta} = \operatorname{argmax}_{\theta} \left[\sum_{i=1}^{m} \log P(y^{(i)}|x^{(i)}) \right] - \alpha \sum_{j=1}^{n} \theta_{j}^{2}$$

Yulia Tsvetkov 60 Undergrad NLP

L1 regularization (=lasso regression)

The sum of the (absolute value of the) weights

$$R(\theta) = ||\theta||_1 = \sum_{i=1}^n |\theta_i|$$

L1 regularized objective function:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \left[\sum_{1=i}^{m} \log P(y^{(i)}|x^{(i)}) \right] - \alpha \sum_{j=1}^{n} |\theta_{j}|$$

Yulia Tsvetkov 61 Undergrad NLP

Multinomial Logistic Regression

Often we need more than 2 classes

- Positive/negative/neutral
- Parts of speech (noun, verb, adjective, adverb, preposition, etc.)
- Classify emergency SMSs into different actionable classes

If >2 classes we use multinomial logistic regression

- = Softmax regression
- = Multinomial logit
- = (defunct names : Maximum entropy modeling or MaxEnt

So "logistic regression" will just mean binary (2 output classes)

Yulia Tsvetkov 62 Undergrad NLP

Multinomial Logistic Regression

The probability of everything must still sum to 1

P(positive|doc) + P(negative|doc) + P(neutral|doc) = 1

Need a generalization of the sigmoid called the **softmax**

- Takes a vector $z = [z_1, z_2, ..., z_k]$ of k arbitrary values
- Outputs a probability distribution
- each value in the range [0,1]
- all the values summing to 1

We'll discuss it more when we talk about neural networks

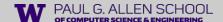
Yulia Tsvetkov Undergrad NLP

Components of a probabilistic machine learning classifier

Given m input/output pairs $(x^{(i)}, y^{(i)})$:

- 1. A **feature representation** for the input. For each input observation $x^{(i)}$, a vector of features $[x_1, x_2, ..., x_n]$. Feature j for input $x^{(i)}$ is x_j , more completely $x_1^{(i)}$, or sometimes $f_j(x)$.
- 2. A classification function that computes \hat{y} the estimated class, via p(y|x), like the sigmoid or softmax functions
- 3. An objective function for learning, like cross-entropy loss
- An algorithm for optimizing the objective function: stochastic gradient descent

Yulia Tsvetkov Undergrad NLP



Next class:

Language models

Yulia Tsvetkov 65 Undergrad NLP