

Natural Language Processing **CSE 447**

Grand Challenges in LLM Reasoning

Lecturer: Melanie Sclar Some slides from Hyunwoo Kim

Natural Language Processing - CSE 447

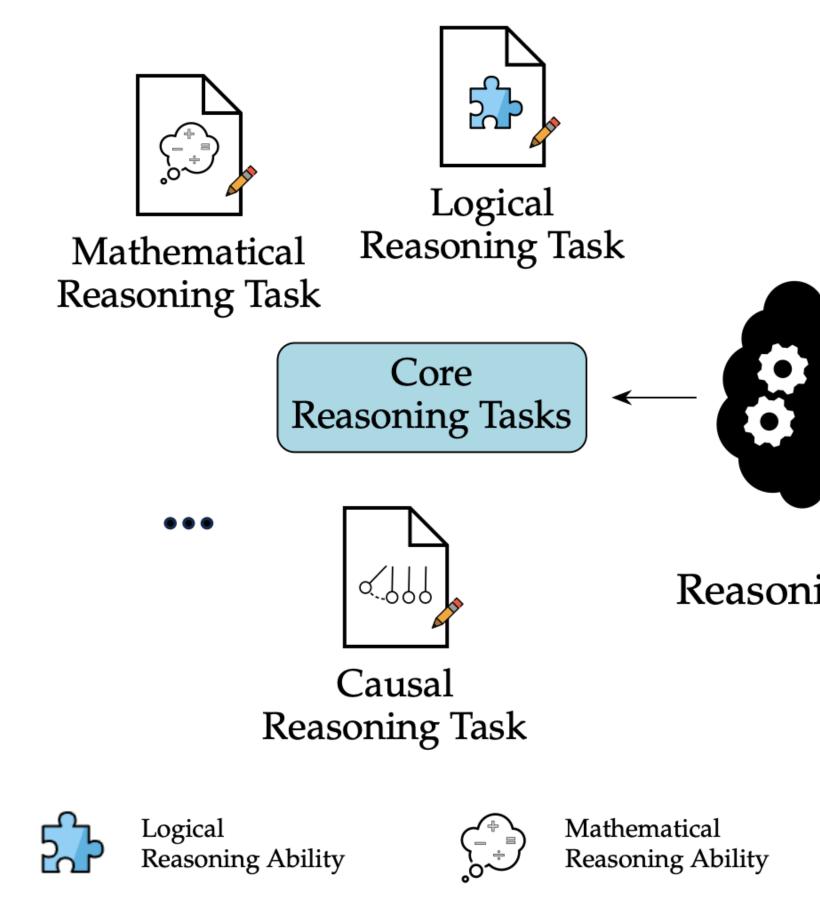
TA UNIVERSITY of WASHINGTON

Outine

- What does LLM reasoning encompass?
- Grand Challenges:
 - How do we **measure** LLMs' reasoning skills?
 - Striving to improve measurement practices: Theory of Mind as a case study.
 - Quantifying memorization vs generalization through rationale-based reasoning
 - How do we **improve** LLMs' reasoning skills?
 - Training techniques, or training with better data.
 - Chain of Thought is not a holy grail. Inference-time algorithms.

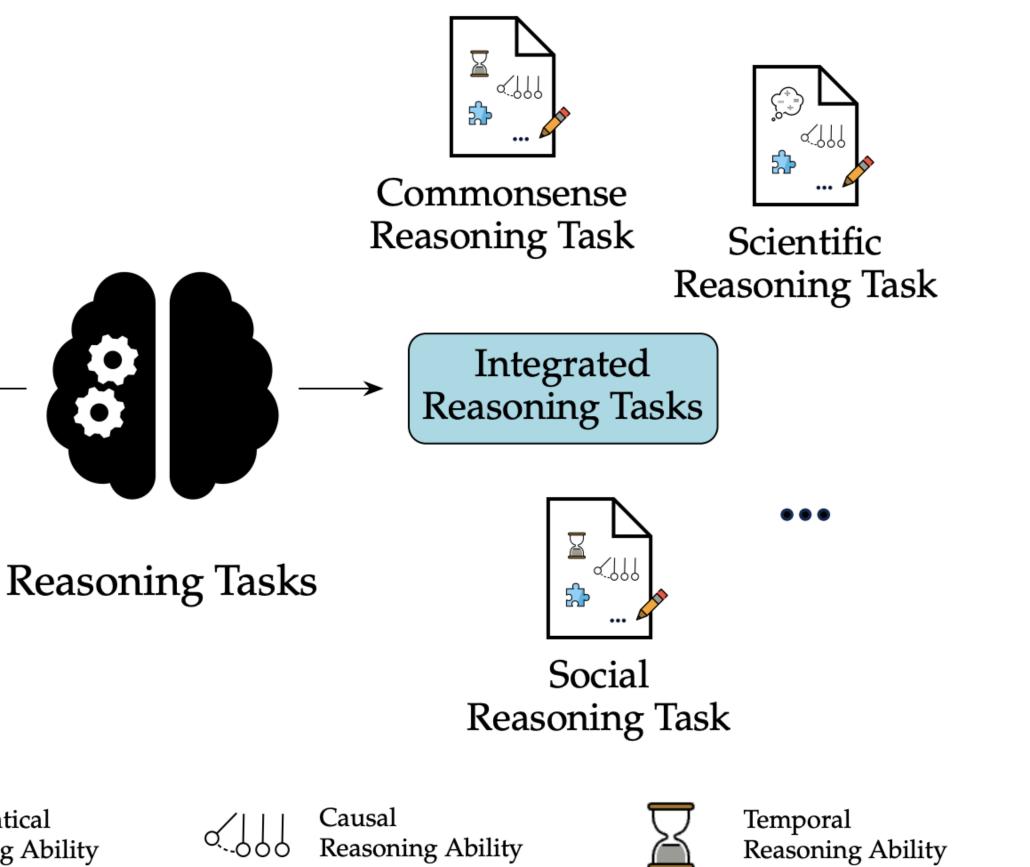
Natural Language Processing - CSE 447

What does LLM reasoning encompass?



From Mondorf and Plank, 2024. Beyond Accuracy: Evaluating the Reasoning Behavior of Large Language Models - A Survey.

Natural Language Processing - CSE 447



Challenges in LLM Reasoning

How can reasoning be measured?

Evaluation Method	Advantages	Disadvantages
Conclusion-based evaluation	Allows for controlled setups Provides metrics for comparison Easy to automate and scale Easy to reproduce	Limited insights Less reliable
Rationale-based evaluation	Offers more nuanced insights More robust in certain scenarios	Difficult to automate and scale Might require expert interpretation
Interactive evaluation	Highly flexible Customizable to model behavior	Expensive Difficult to automate and scale Less standardized and reproducible
Mechanistic evaluation	Identifies features or circuits re- sponsible for specific behaviors Supports direct interventions on model internals	Findings may not generalize across tasks or models Results may be hard to interpret Compute-intensive

From Mondorf and Plank, 2024. Beyond Accuracy: Evaluating the Reasoning Behavior of Large Language Models - A Survey.

Natural Language Processing - CSE 447

Faithful Reasoning Evaluation **Rationale-based** evaluation for measuring generalization vs memorization in mathematical reasoning

Natural Language Processing - CSE 447

Challenges in LLM Reasoning

Faith and Fate: Limits of Transformers on Compositionality NeurIPS 2023 (Spotlight)

Nouha Dziri*

Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena Hwang, Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, Yejin Choi Liwei Jiang⁺ Bill Yuchen Lin[†] Lorraine Li⁺

Natural Language Processing - CSE 447

Ximing Lu*

Melanie Sclar*

Challenges in LLM Reasoning

Natural Language Processing - CSE 447

Are LLMs truly reasoning, or are they memorizing from training data?

How can we characterize model performance with respect to properties of each task sample?

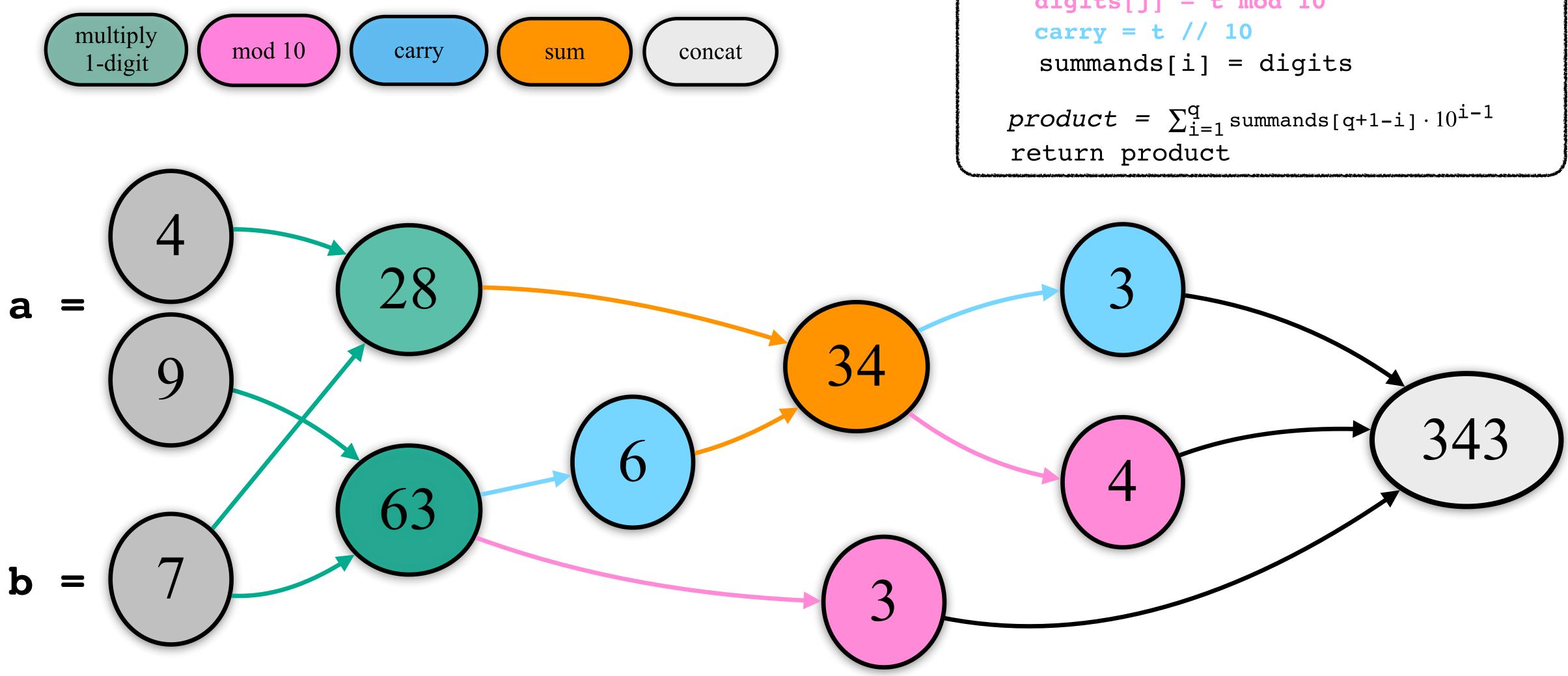
When we see models solving a seemingly difficult question, what can we correlate it to? How do we characterize model errors?

Natural Language Processing - CSE 447

Measuring & characterizing compositionality

- We need to decouple our analysis from pre-training data (inaccessible to us).
- Math/wordforgf@reasinggt@roblems are field? Infinite data to be generiated that chemodec cano gave positive track is is esterin's puzzle (word logic puzzle)
 - Our method: We train models (GPT3) to generate step-bystep solutions for each task, and view their solutions as computation graphs. We can then compare them to ground truth graphs!

Computation graph for 49 x 7



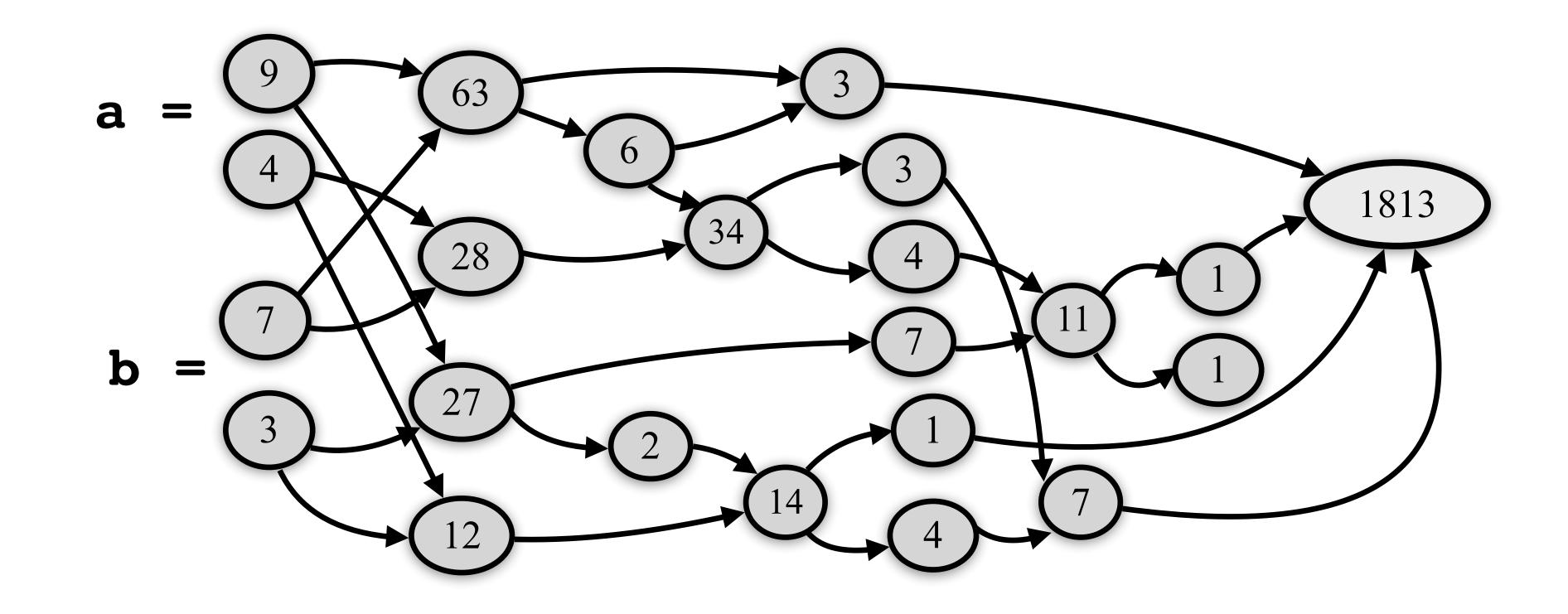
```
function multiply (a[1:p], b[1:q]):
for i = q to 1
   carry = 0
   for j = p to 1
   t = a[j] * b[i]
   t += carry (only if j != p)
   digits[j] = t mod 10
```


How can we characterize model performance with respect to properties of each task sample?

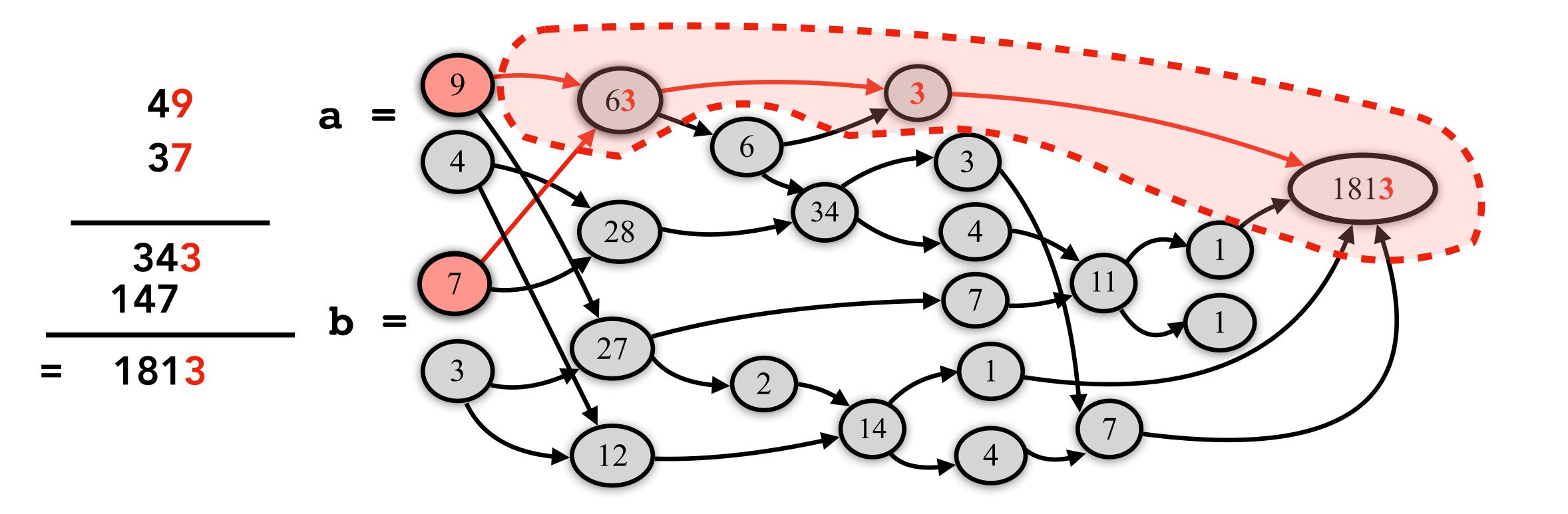
When we see models solving a seemingly difficult question, what can we correlate it to? How do we characterize model errors?

Natural Language Processing - CSE 447

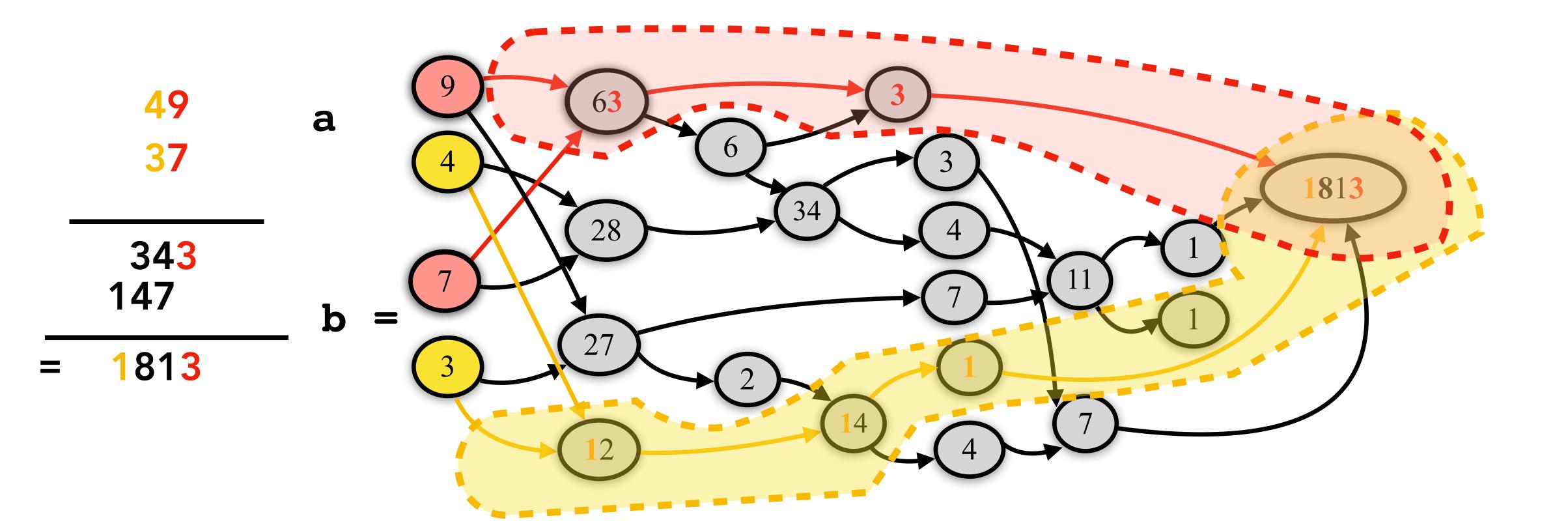
Information Gain Explains Where Transformers Partially Excel



Information Gain Explains Where Transformers Partially Excel



Information Gain Explains Where Transformers Partially Excel



How can we characterize model performance with respect to properties of each task sample?

When we see models solving a seemingly difficult question, what can we correlate it to? How do we characterize model errors?

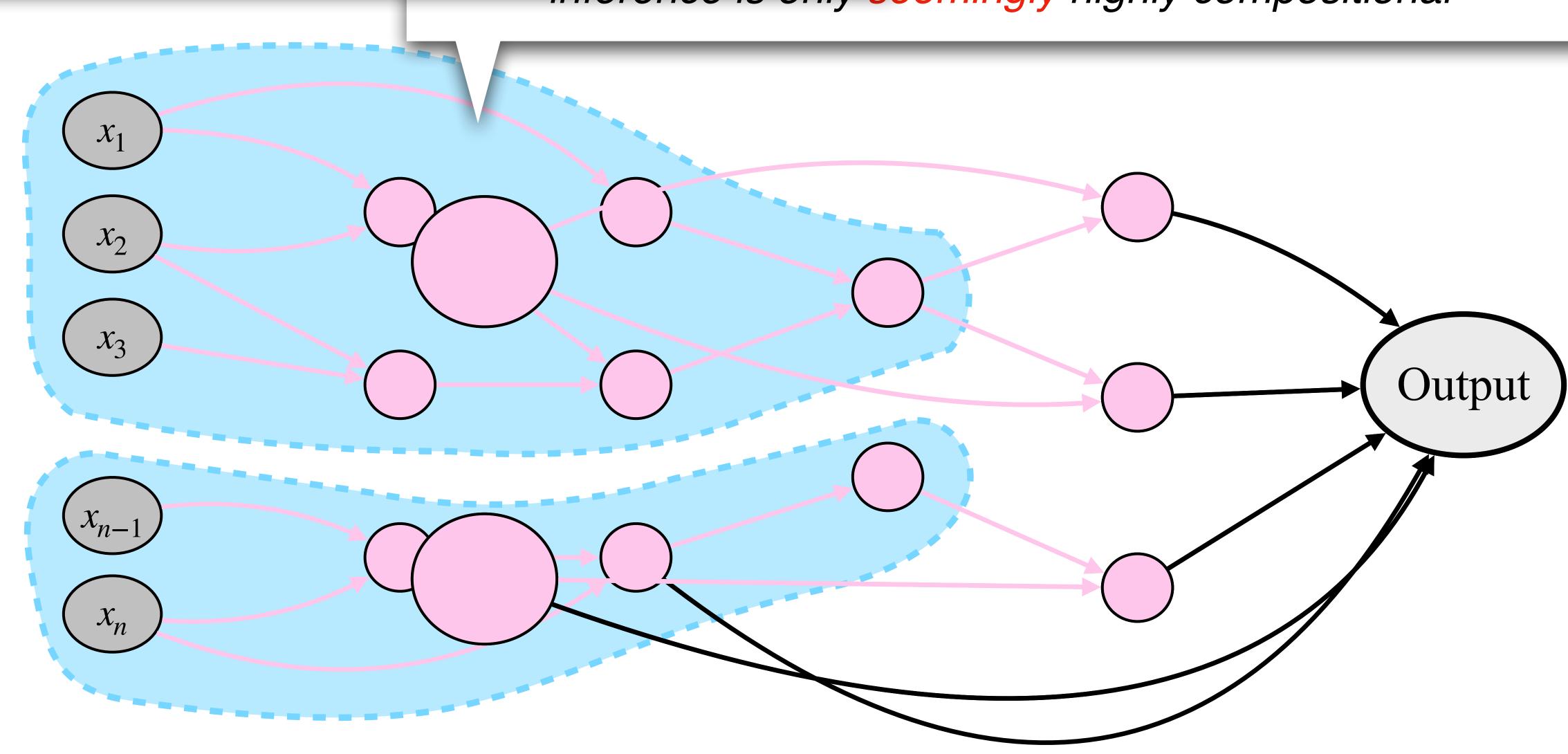
Natural Language Processing - CSE 447

What is the correlation between a model generating a correct output and having seen

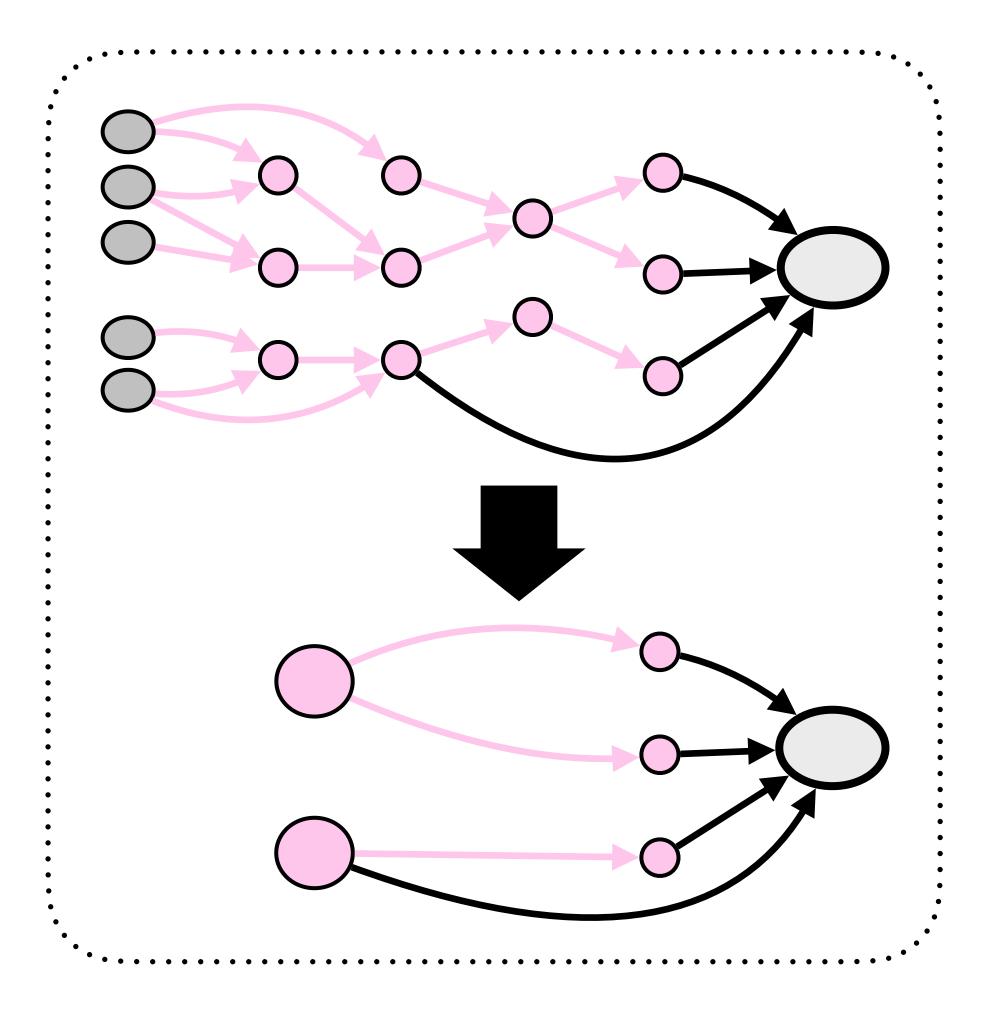
relevant subgraphs during training?

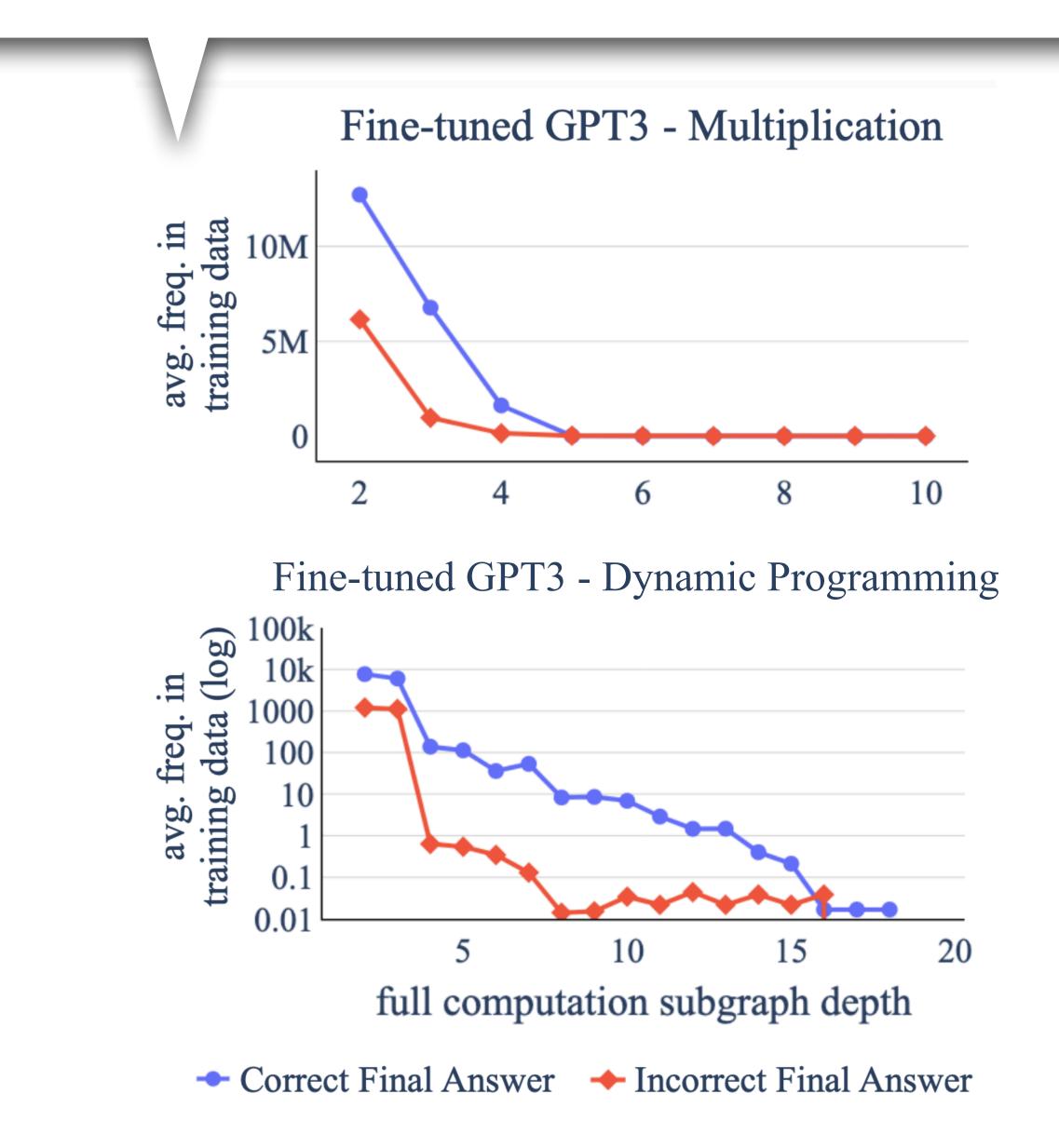
 X_n

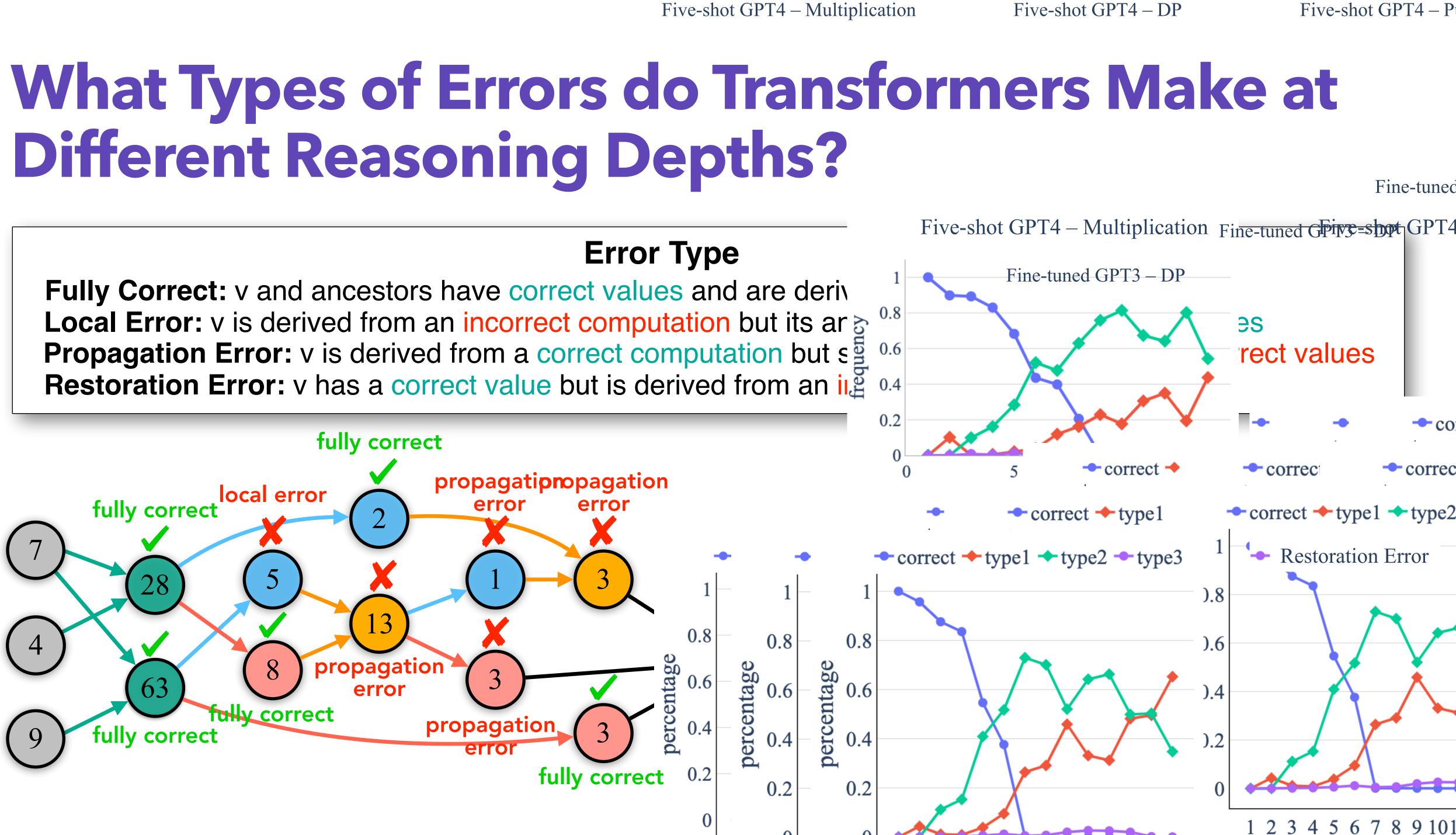
Detect subgraphs already seen during training: vant subgraphs during training, the



Transformers' successes are heavily linked to having seen significant portions of the required computation graph during training





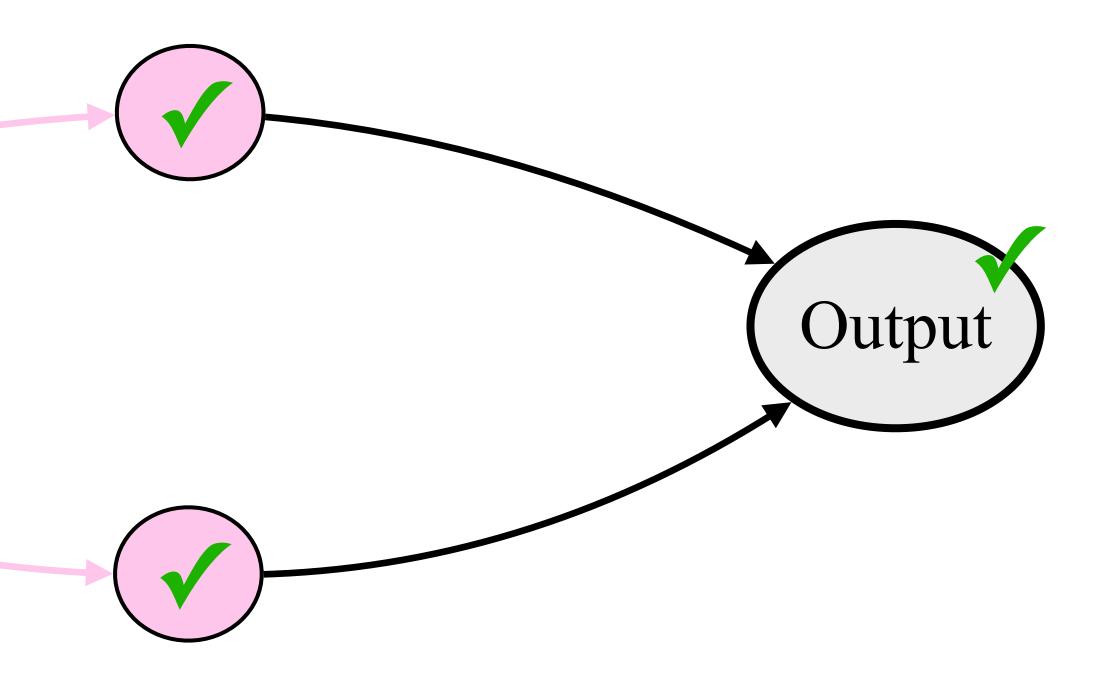


Why does performance inevitably decays with problem size?

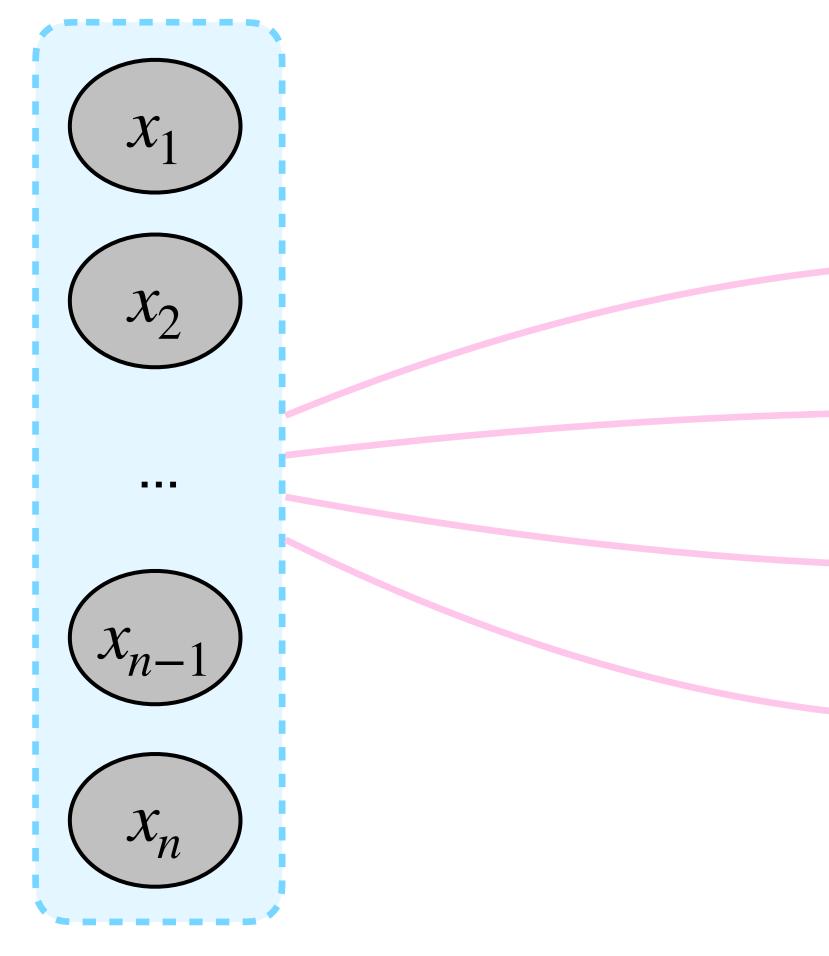
An increasing number of independent reasoning steps inevitably lead to errors



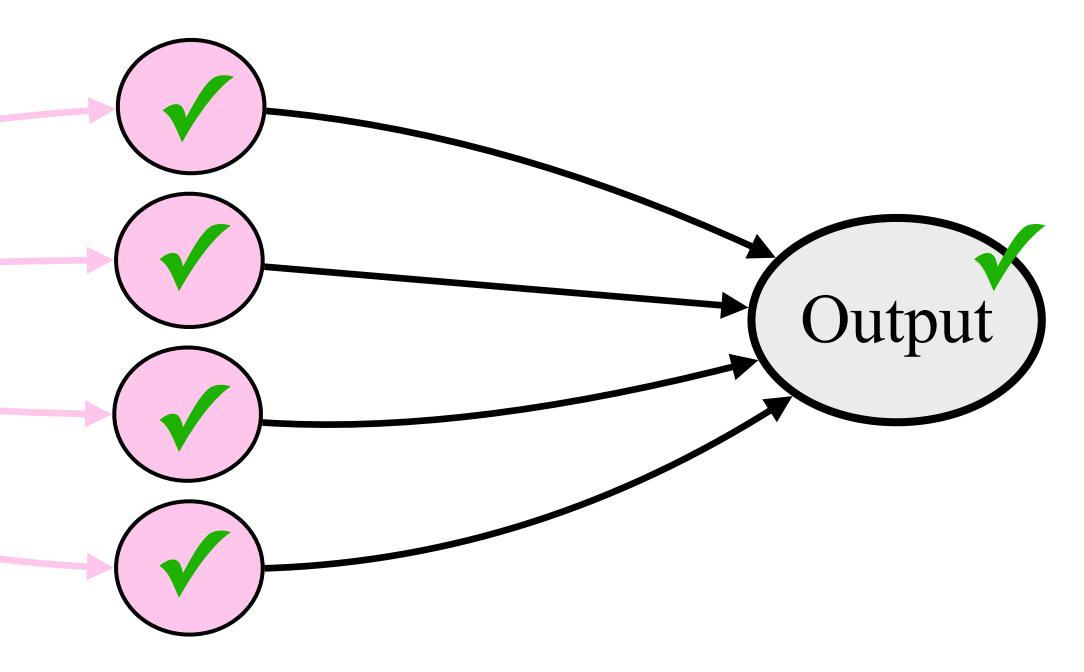
Input nodes



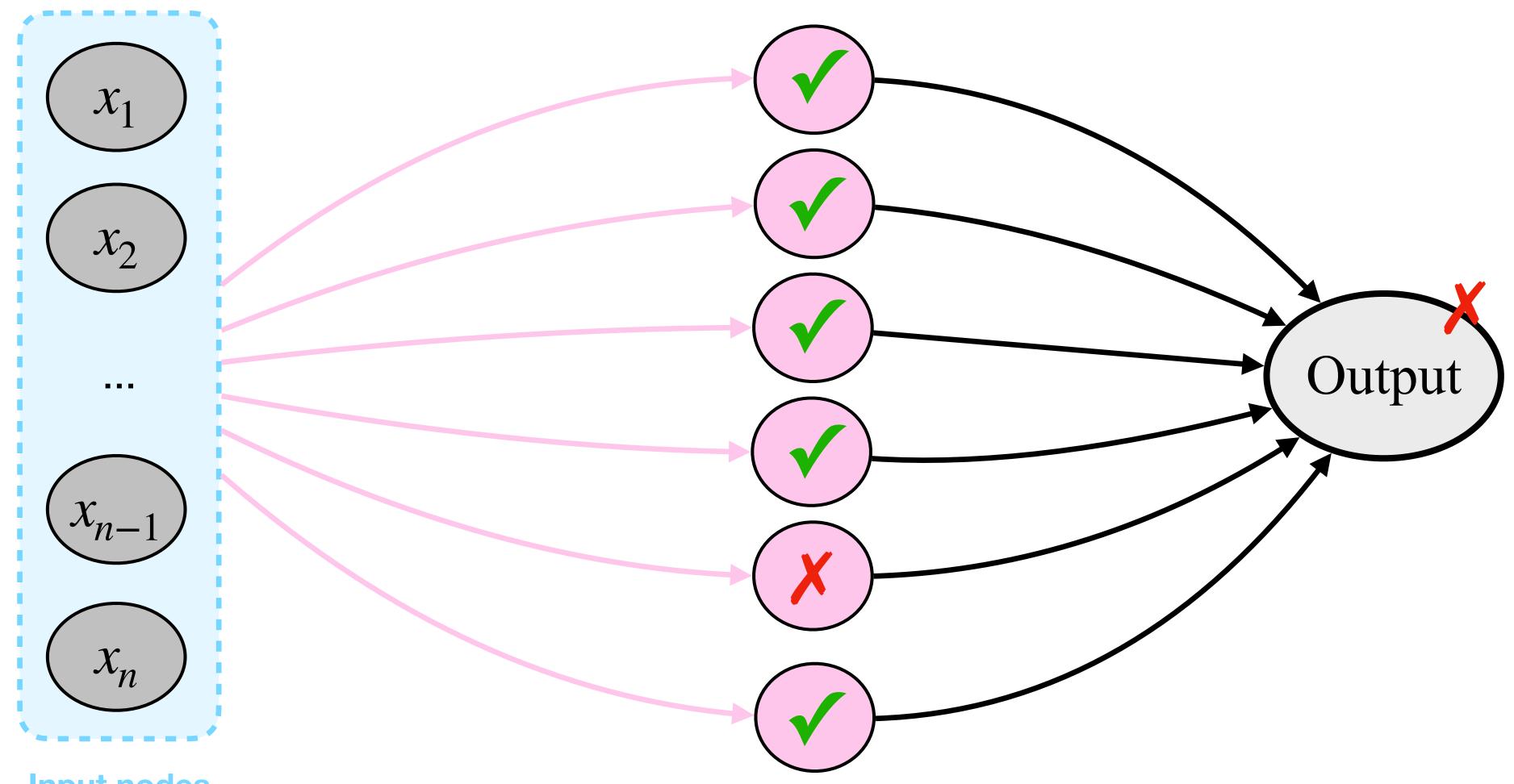
An increasing number of independent reasoning steps inevitably lead to errors



Input nodes

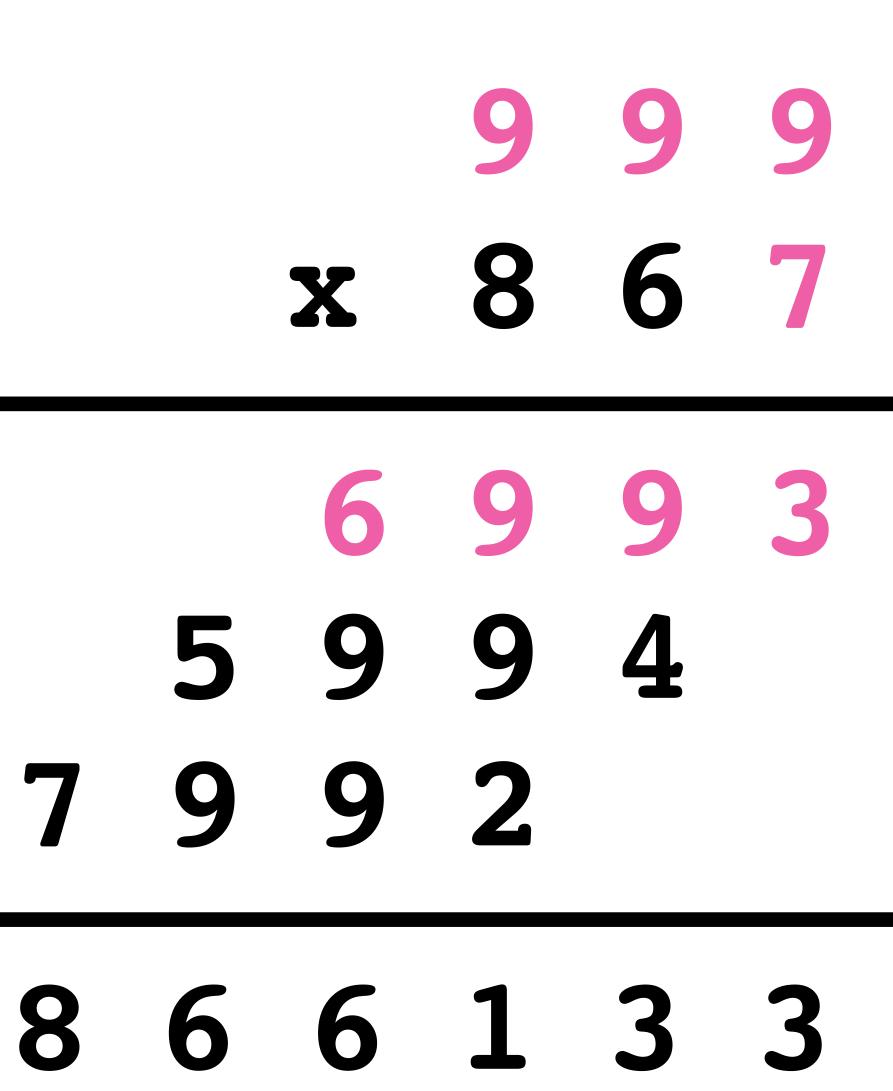


An increasing number of independent reasoning steps inevitably lead to errors



Input nodes

5994 7992 8 6 6 1 3 3



5994 7992 8 6 6 1 3 3

5994 +7992 8 6 6 1 3 3

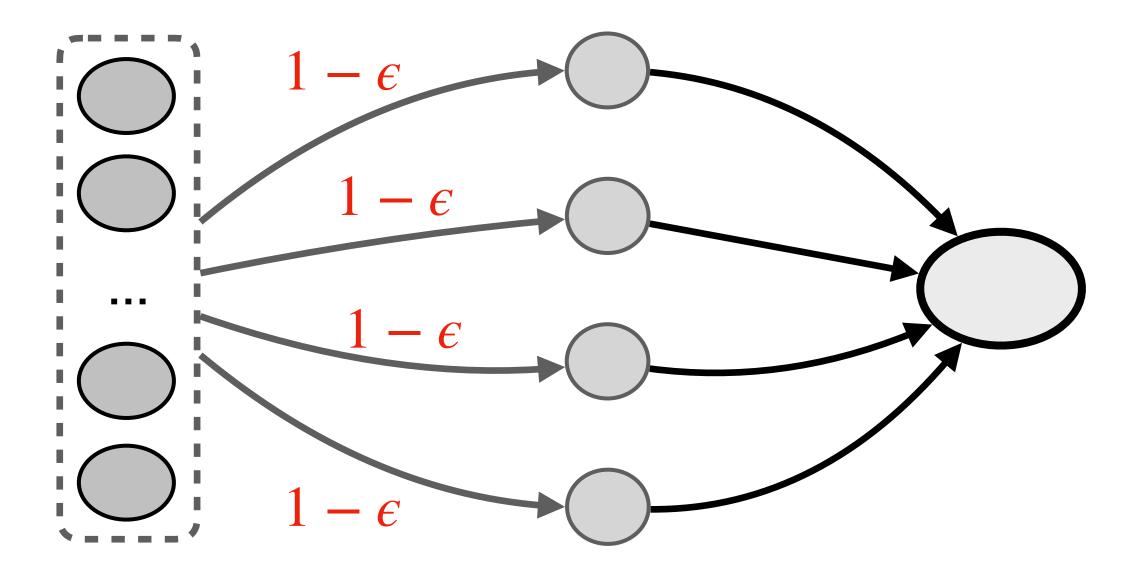
999 **x** 8 6 7

6993

5994 7992 8 6 6 1 3 3

5994 7992 8 6 6 1 3 3

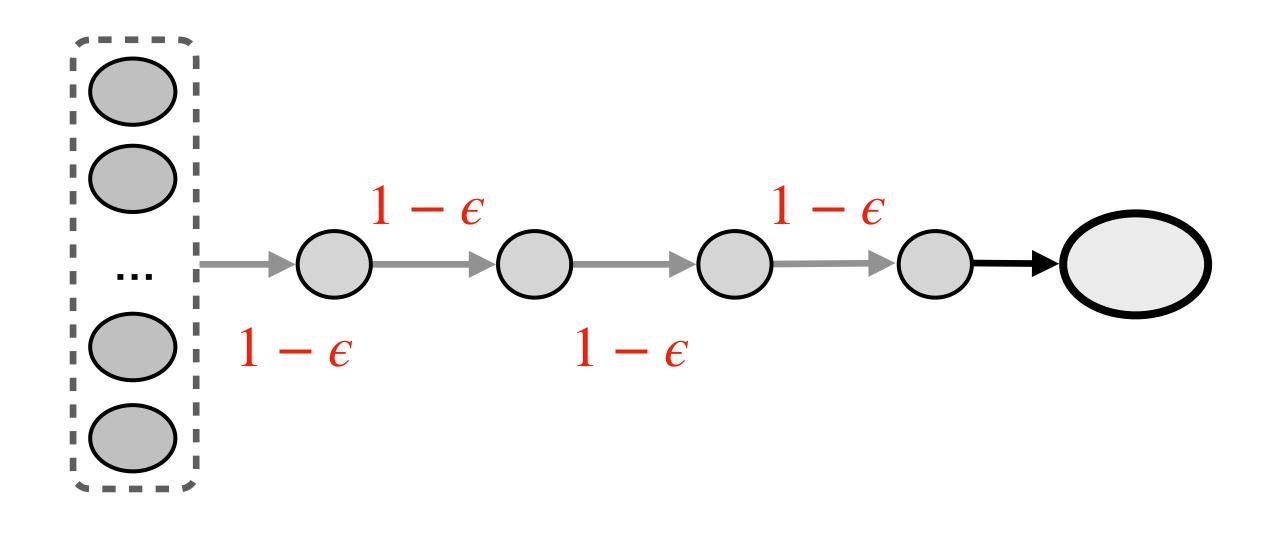
5994 7992 8 6 6 1 3 3



 $\approx (1-\epsilon)^n$

An increasing number of reasoning steps inevitably with exponentially increasing probability

If the probability of making an error in a single reasoning step is ϵ , probability of success is...



 $\approx (1-\epsilon)^n$

Theoretical framing on error accumulation may inform future developments

- Does it mean there aren't avenues for progress? No! Promising avenues:
 - use transformers in ways that **chain only few** compositional steps to reach a solution
 - use transformers in tasks where **evaluation** metrics afford leniency
 - augmenting transformers with planning **modules** and refining methods to decrease ϵ !

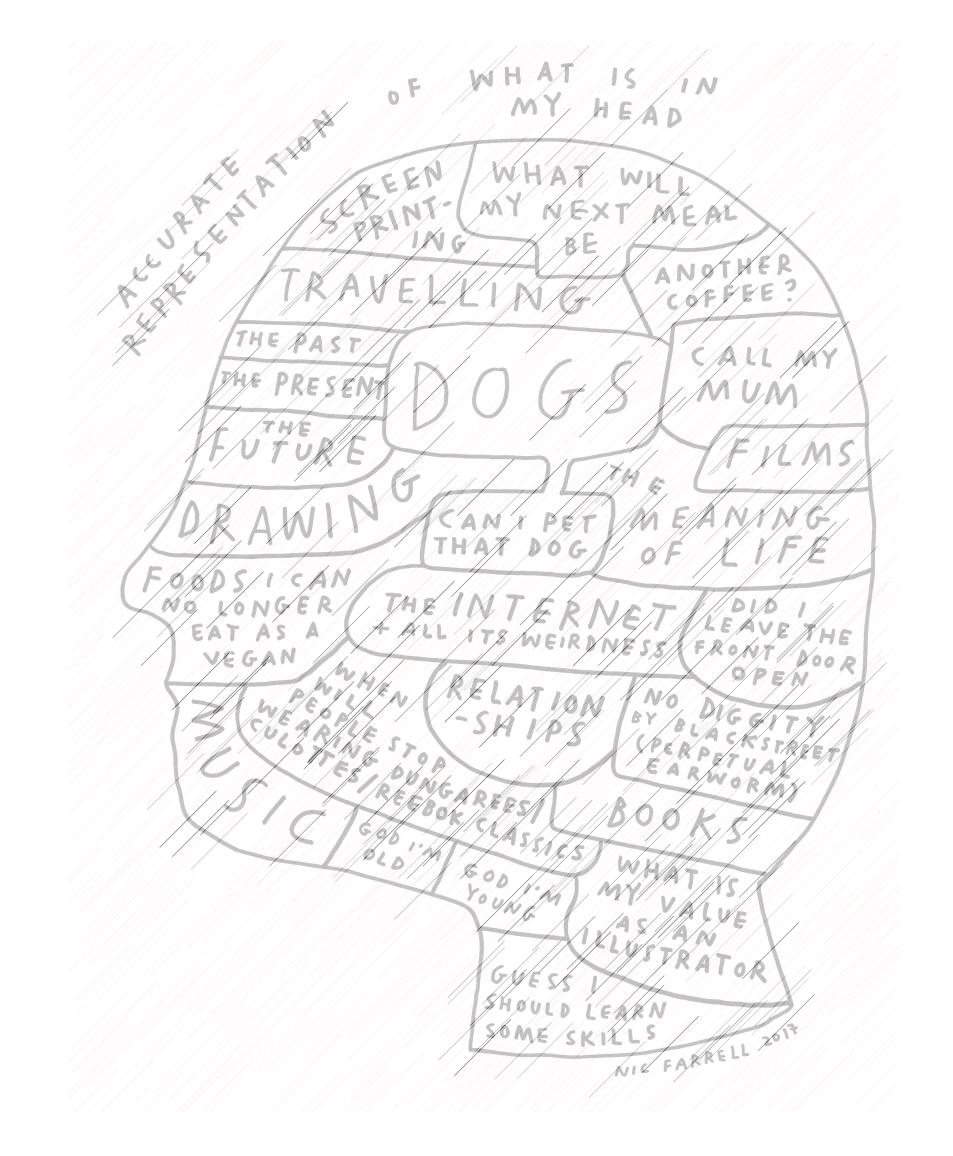
Faithful Reasoning Evaluation Complex conclusion-based evaluation for theory of mind reasoning

Natural Language Processing - CSE 447

Challenges in LLM Reasoning

Theory of Mind the ability to reason about the mental states of others e.g., desires, beliefs, intentions, etc.

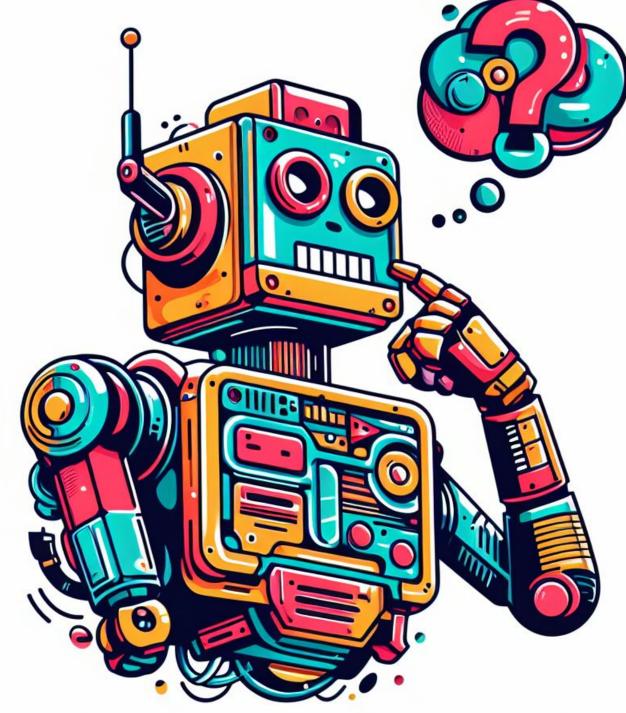
Natural Language Processing - CSE 447



Challenges in LLM Reasoning

Theory of Mind? Are we saying machines have a mind? No, they do not have minds, emotions, or intentions However, they need social reasoning capabilities

Natural Language Processing - CSE 447



What is theory of mind/social cognition?

- Social cognition takes up a huge part of our reasoning
 - Every minute! Even right now
 - Social factors impacted the evolution of our intelligence

Natural Language Processing - CSE 447

One of the most quintessential human mental function: Thinking about each other's thoughts

• Our relationship with other people is the most crucial aspect of our lives

GPT-4 already shows sparks of AGI?

Sparks of Artificial General Intelligence: Early experiments with GPT-4

Varun Chandrasekaran Ronen Eldan Johannes Gehrke Sébastien Bubeck Yin Tat Lee Yuanzhi Li Eric Horvitz Ece Kamar Peter Lee Scott Lundberg Yi Zhang Harsha Nori Hamid Palangi Marco Tulio Ribeiro

Microsoft Research

Natural Language Processing - CSE 447

"Our findings suggest that GPT-4 has a very advanced level of theory of mind."

GPT-4 already has theory of mind?

...

Stanford Graduate School of Business 🤣 @StanfordGSB

Machines have theory of mind.

That's the conclusion Professor @michalkosinski reached in his latest research. Using #ChatGPT, Kosinski has been testing what mental capacities these #AI tools may have. @nytimes

Natural Language Processing - CSE 447

Theory of Mind Might Have Spontaneously Emerged in Large Language Models

¹Stanford University, Stanford, CA94305, USA

GPT-4 already has theory of mind?

ChatGPT 4 ~

You

There is a closed bag filled with chocolate. The label on the bag says "popcorn". Sam finds the bag. She has seen the bag for the first time and did not look inside.

Sam will think that she has just found a bag full of

popcorn.

Authors: Michal Kosinski^{*1} Affiliations: ¹Stanford University, Stanford, CA94305, USA

Natural Language Processing - CSE 447

>> This is the "Smarties task", a famous test in psychology

Theory of Mind Might Have Spontaneously Emerged in Large Language Models

Look again

ChatGPT 4 ~

You

There is a closed bag filled with chocolate. The label on the bag say "UWISGREAT". Sam saw this bag for the first time and did not look inside.

Sam thinks that she has just found a bag full of

ChatGPT

Based on your description, Sam might think that she has found a bag full of chocolate, as indicated by the bag's appearance and label. Would you like me to create an image of this scenario?

Natural Language Processing - CSE 447

Even a slightest change in the label with an unseen word causes GPT-4 to fail on these theory of mind tests.

Look again

ChatGPT 4 ~

You

There is a closed white bag filled with chocolate. The label on the bag say "UWISGREAT". Sam saw this bag for the first time and did not look inside.

Sam thinks that she has just found a bag full of what?

ChatGPT

Based on your description, Sam, upon seeing the closed white bag labeled "UWISGREAT" filled with chocolate but without looking inside, would likely assume that she has found a bag full of chocolates or sweets. This assumption is based on the context that the bag is specifically filled with chocolate, and the label does not provide any contradictory information to suggest otherwise.

Natural Language Processing - CSE 447

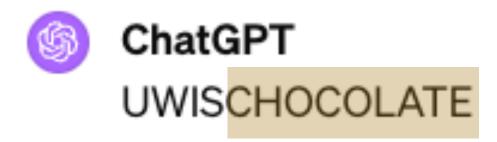
Look again

ChatGPT 4 ~

You

There is a closed brown bag filled with chocolate. The label on the bag just say "UWISGREAT" without any details. Sam saw this bag for the first time and did not look inside.

Sam thinks that she has just found a bag full of



Natural Language Processing - CSE 447

Development of ToM

Recognize that others have

- 1. Diverse desires
- 2. Diverse beliefs soon after
- 3. Access to different knowledge bases
- 4. May have False beliefs
- 5. Capability of hiding emotions

Development of ToM

Recognize that others have

- 1. Diverse desires
- 2. Diverse beliefs soon after
- 3. Access to different knowledge bases
- 4. May have False beliefs
- 5. Capability of hiding emotions

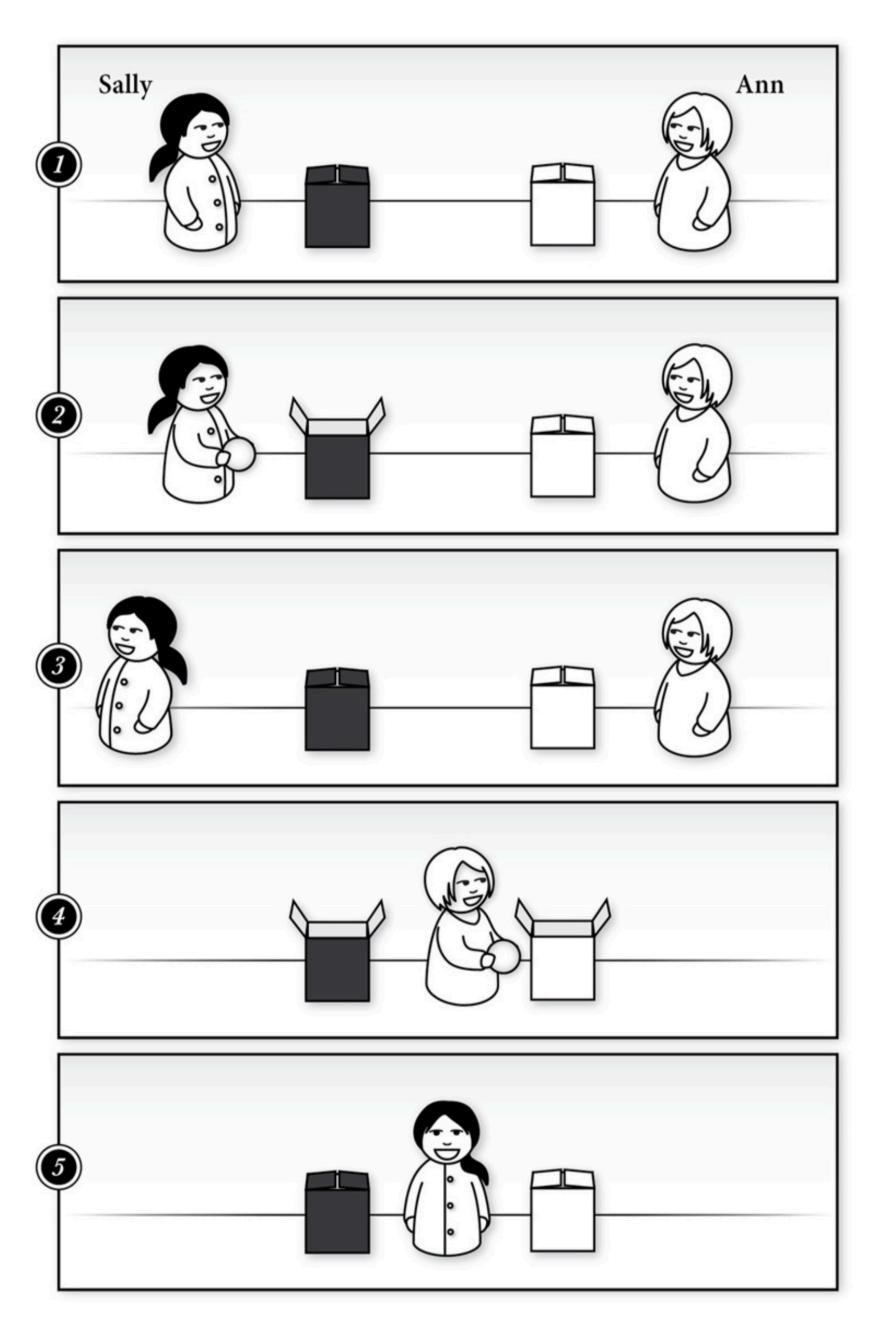
The Sally-Anne test

Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a "theory of mind"?. Cognition, 21(1), 37-46.

- 1. Sally has a black box and Anne has a white box.
- 2. Sally has a marble. She puts the marble into her box.
- 3. Sally goes for a walk.
- 4. Anne takes the marble out of Sally's box and puts into her box.
- 5. Sally comes back and wants to play with her marble.

Question: Where will Sally look for her marble?

Natural Language Processing - CSE 447



The Sally-Anne test

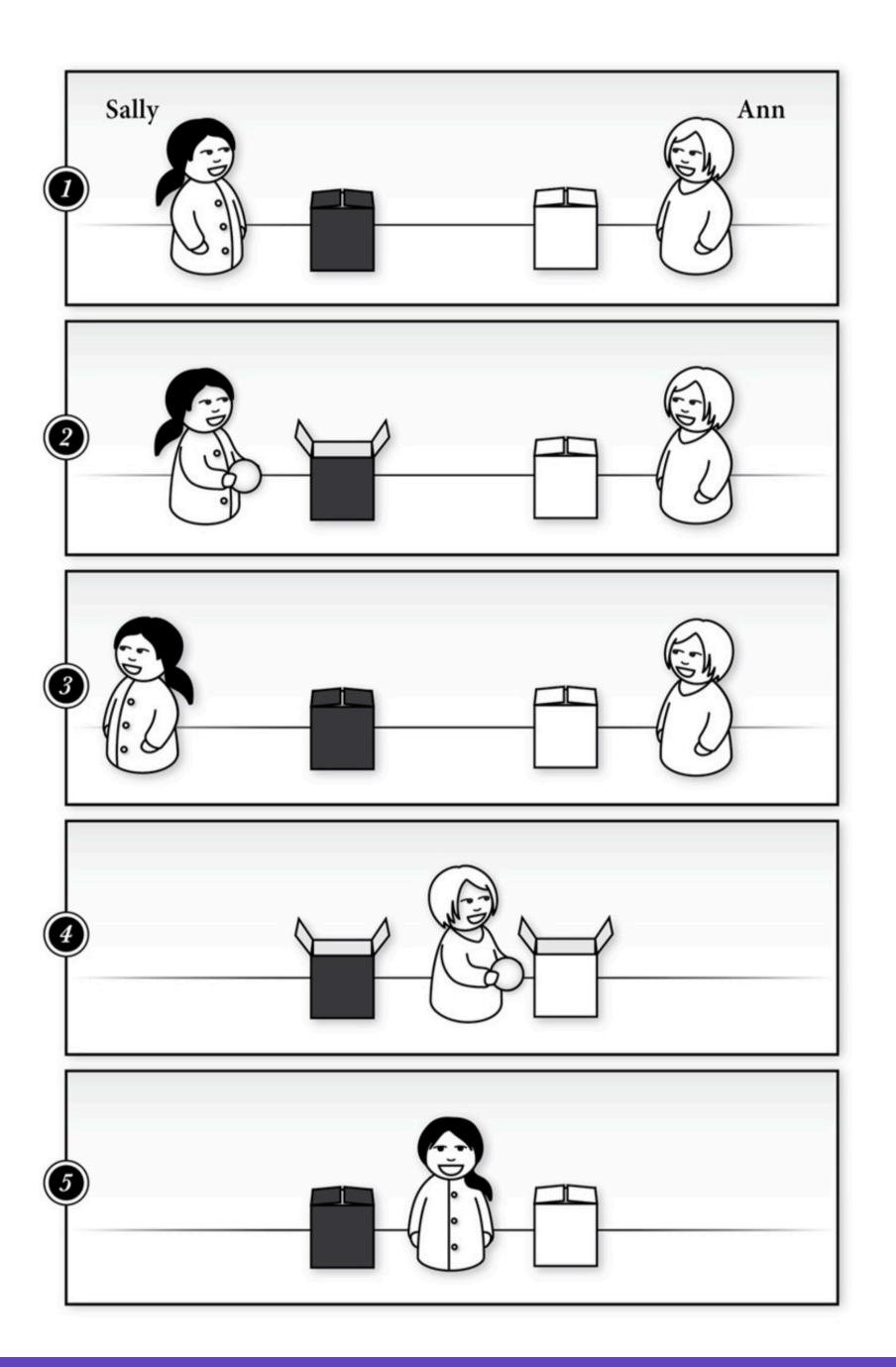
Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a "theory of mind"?. Cognition, 21(1), 37-46.

Question: Where will Sally look for her marble?

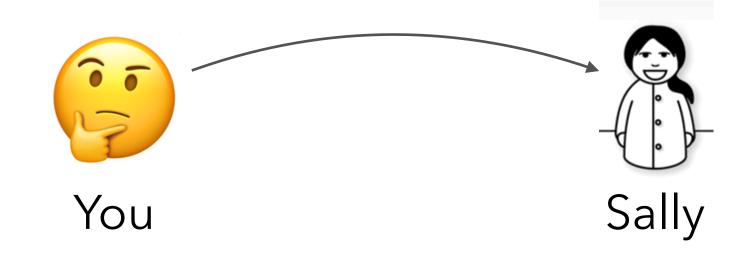
- Before the age of 4: Sally will look for it in Anne's box
- By the age of 4: Sally will look for it in her box

By the age of 4, children begin to understand that others may have *false beliefs*

Natural Language Processing - CSE 447

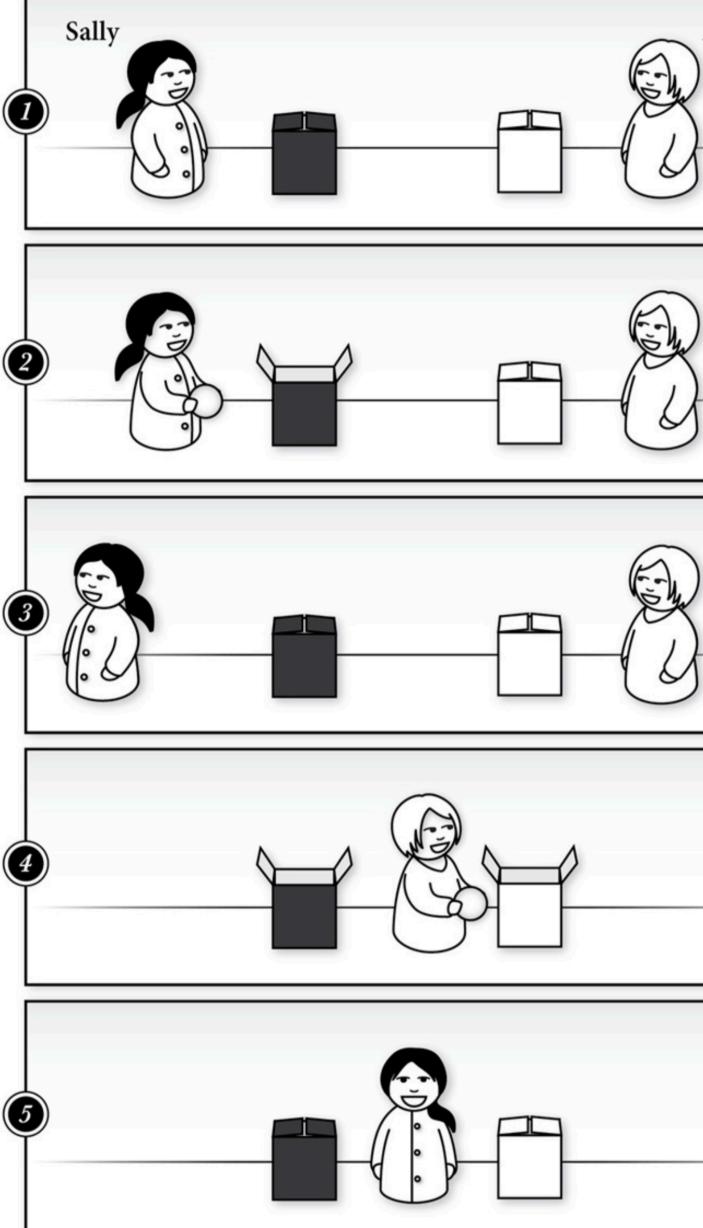


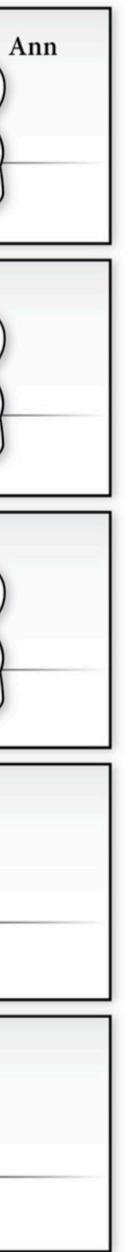
Where will Sally think her marble is?



Natural Language Processing - CSE 447

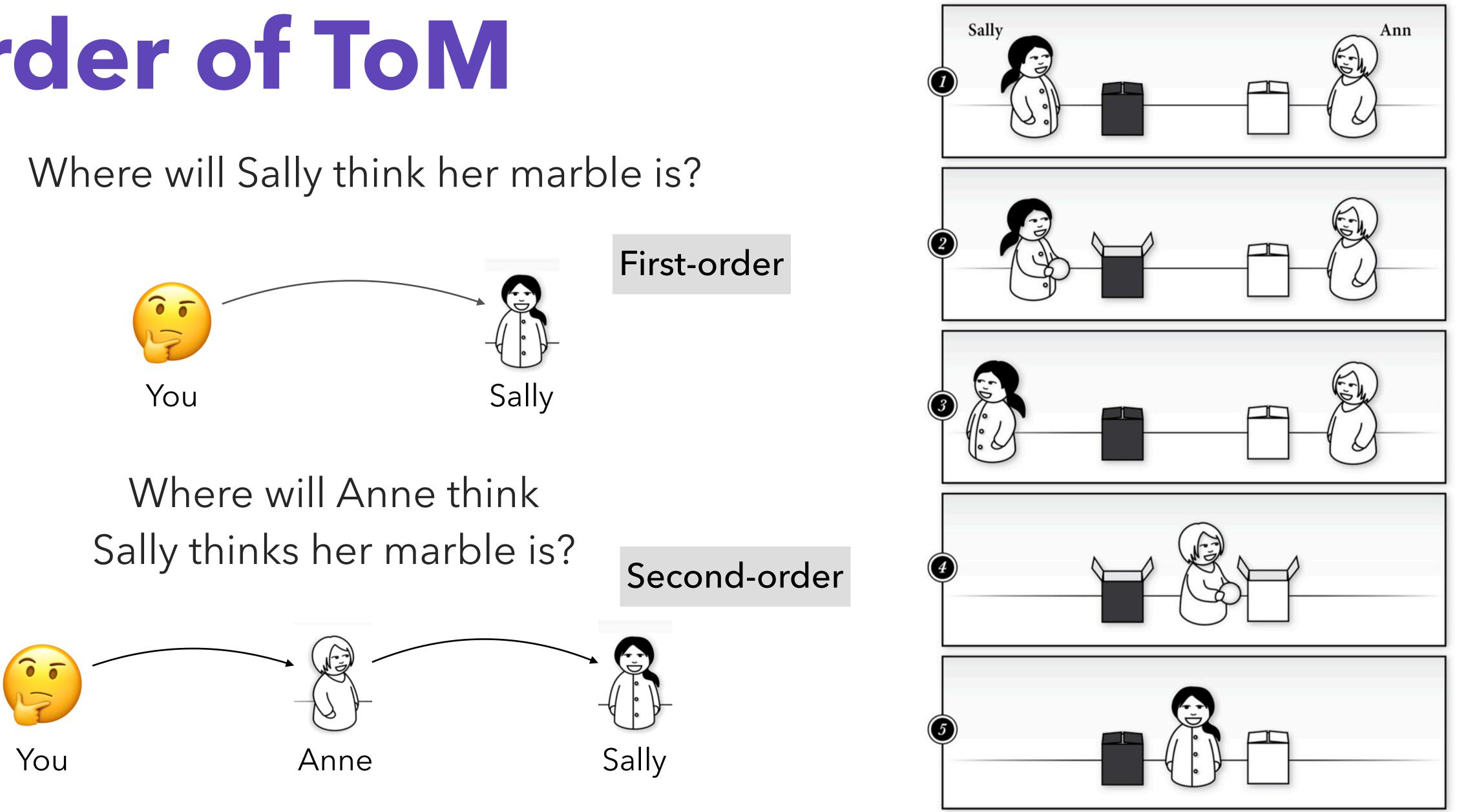
First-order







Where will Anne think



Natural Language Processing - CSE 447

How can we systematically quantify theory of mind reasoning skills?

Natural Language Processing - CSE 447

TrackTheMind: program-guided adversarial data generation for theory of mind reasoning In submission

Melanie Sclar

Yulia Maryam Jane Dwivedi-Yu Fazel-Zarandi Tsvetkov

Natural Language Processing - CSE 447

Yonatan Bisk

Yejin Choi

Motivation

- Theory of mind skills are difficult to measure
 - Hard to find enough explicit ToM data in the wild
 - Data leaks
 - Accidentally evaluating on easy cases (models are improving!)
- Let's automatically generate difficult ToM data so we can stress-test models! Specifically (story, ToM question, answer) triples.

Theory of Mind-specific domain language: capabilities

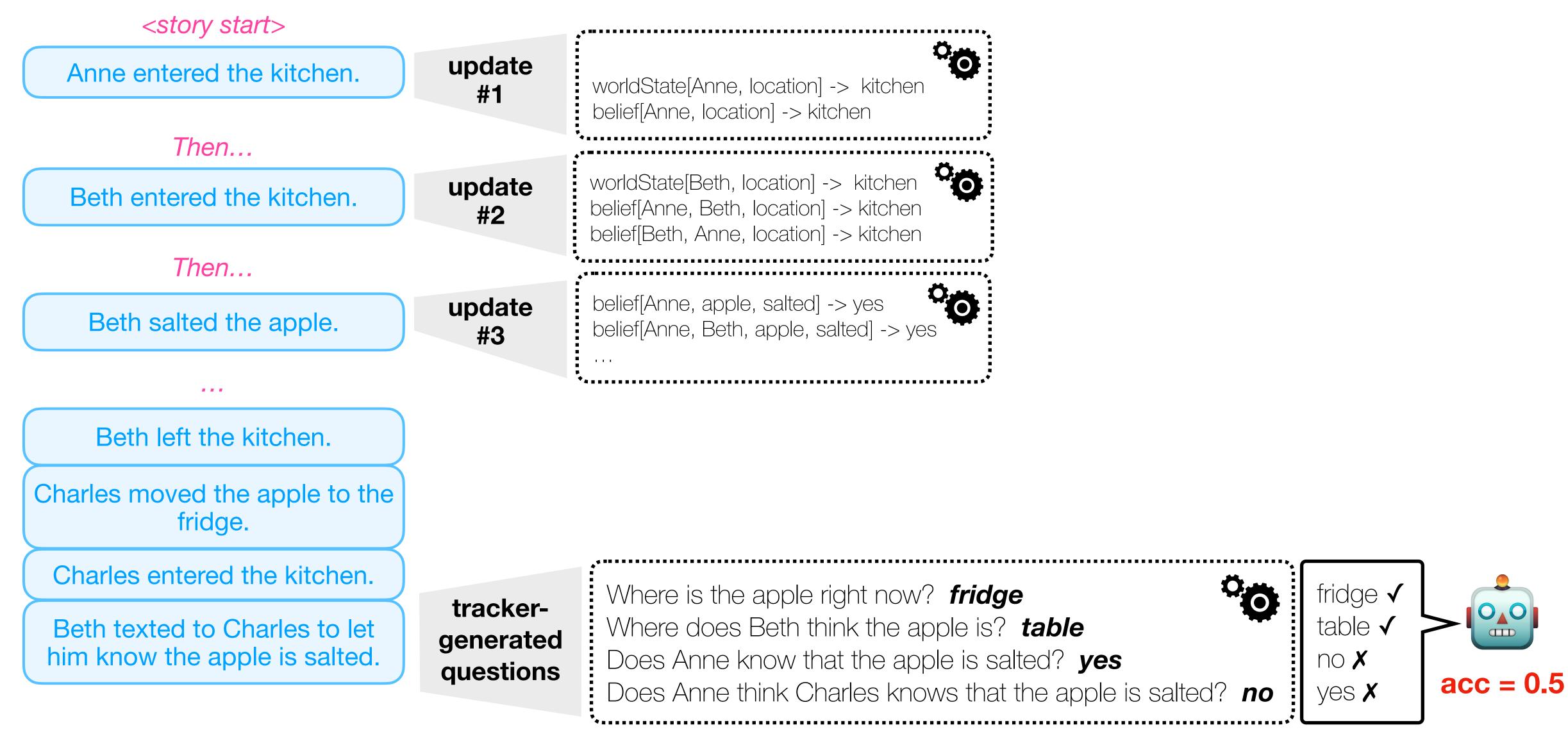
• We code a small "world model": we automatically track the mental state updates any time someone performs an action

• Actions supported:

- entering and leaving a room,
- moving objects to a container or another room,
- changing the state of an object,

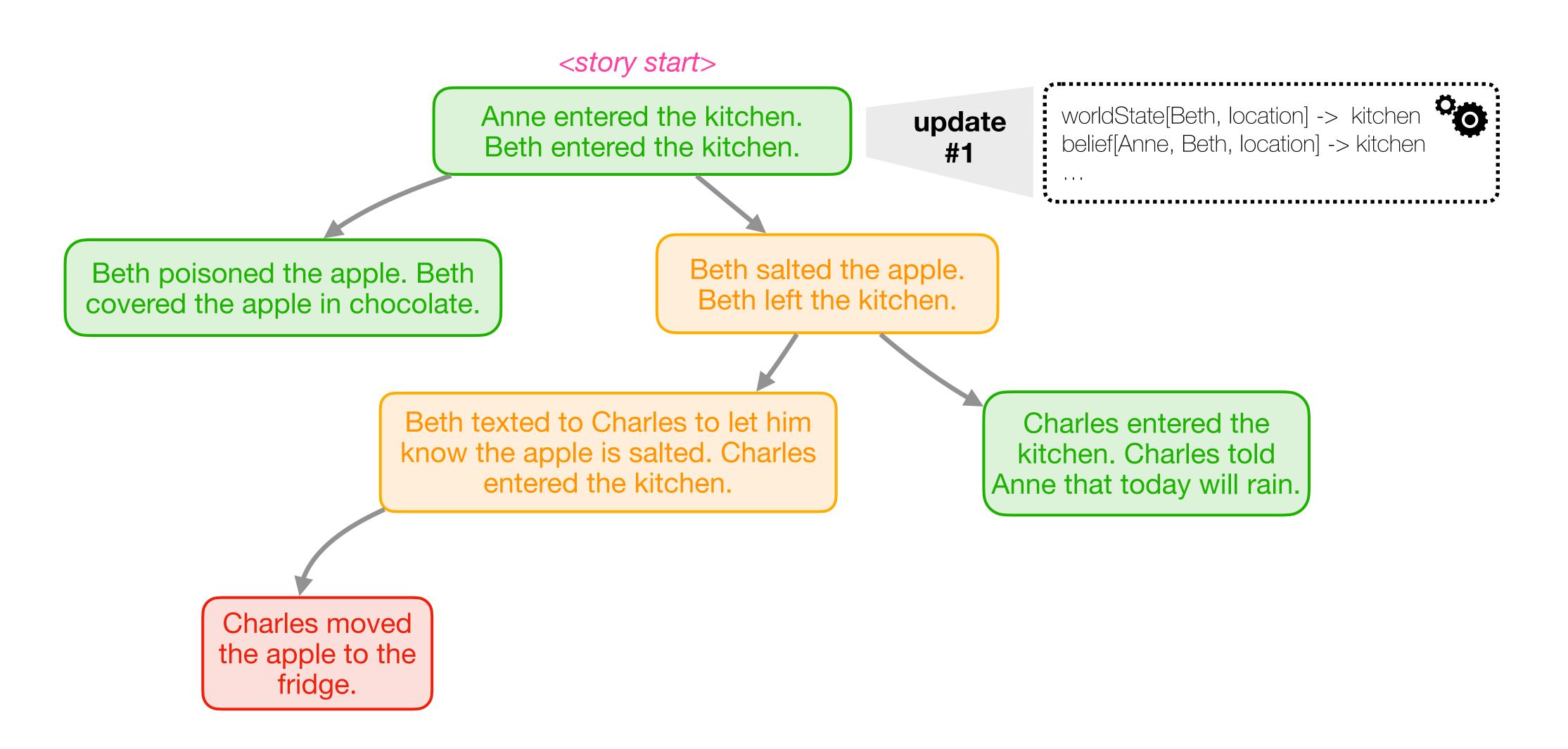
• communicating with people about abstract topics or to tell them about a world state change, asymmetry (people spying or being distracted)

Theory of Mind-specific domain language: example



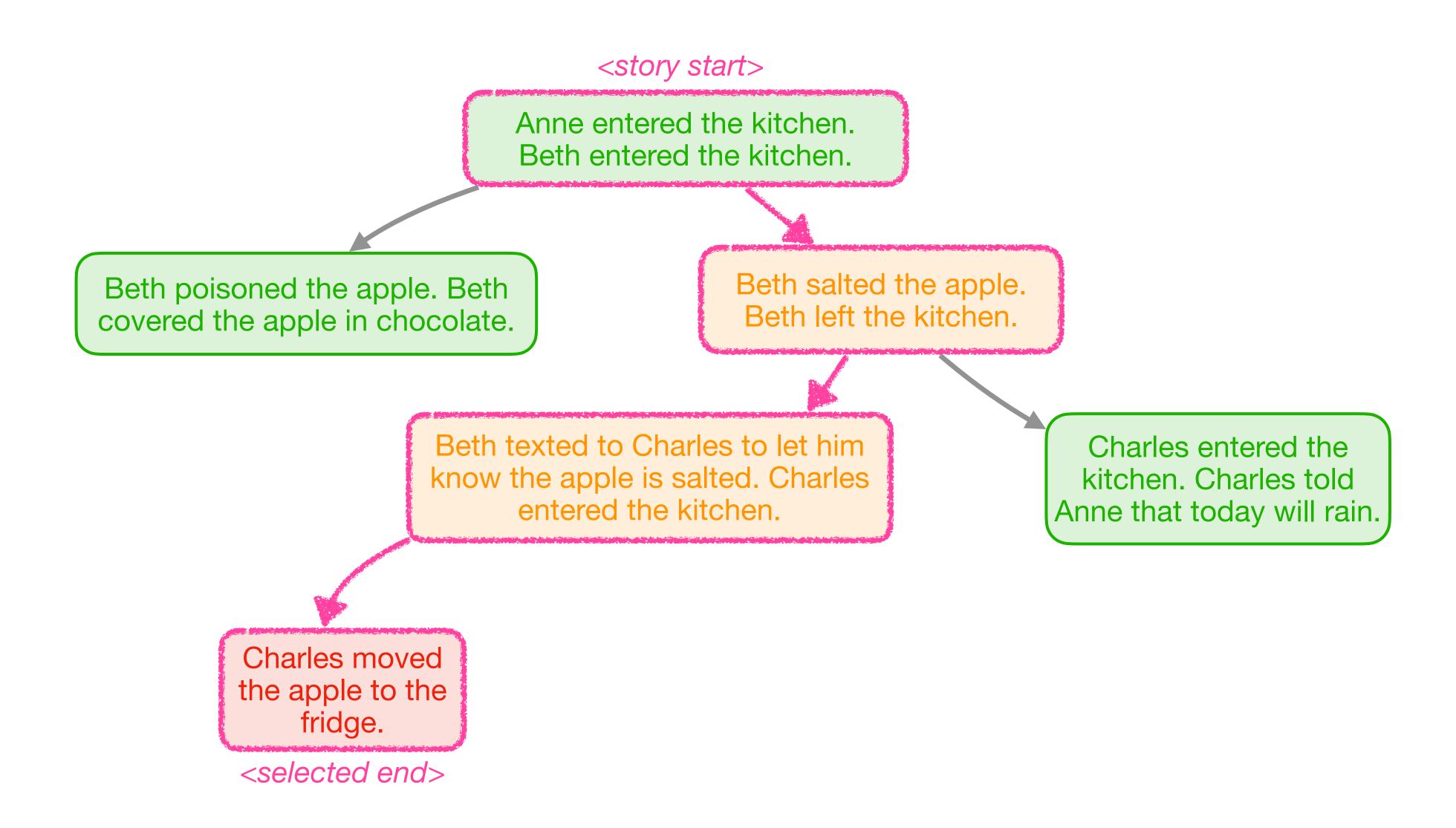
Natural Language Processing - CSE 447

Adversarial story generation: searching for difficult stories with A*



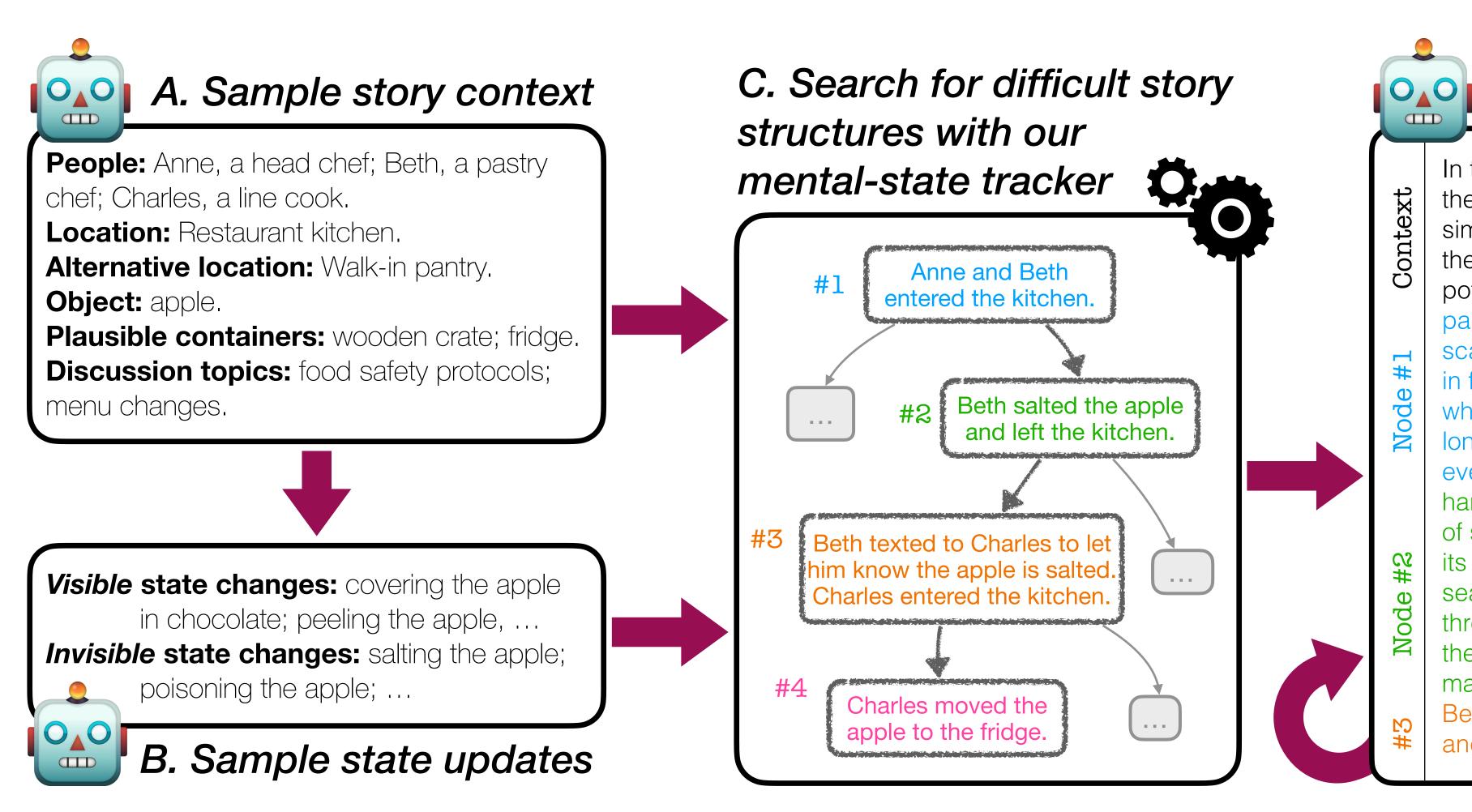
Natural Language Processing - CSE 447

Adversarial story generation: searching for difficult stories with A*



Natural Language Processing - CSE 447

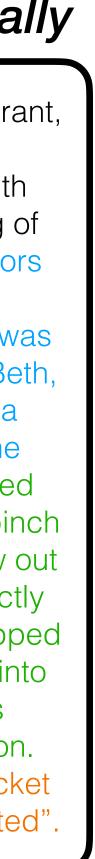
TrackTheMind: full setup



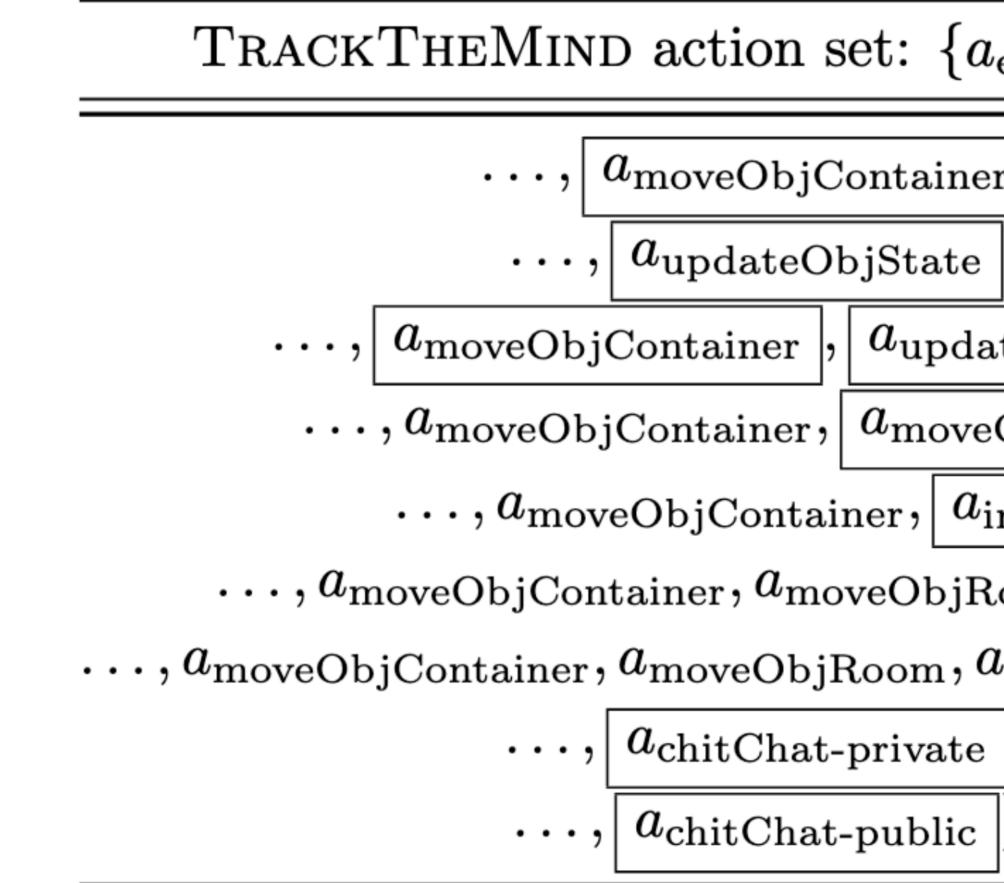
Natural Language Processing - CSE 447

D. Infill story incrementally

In the bustling kitchen of a high-end restaurant, the scent of freshly baked bread and simmering sauces filled the air, mingling with the hum of appliances and the soft clinking of pots and pans. As the swinging kitchen doors parted, Anne strode in, her sharp eyes scanning the room to ensure every station was in full swing, and was closely followed by Beth, who made a beeline for the counter where a lone apple waited to be transformed into the evening's dessert masterpiece. Beth's skilled hands moved with precision, sprinkling a pinch of salt onto the apple's tender flesh to draw out its natural sweetness. With the apple perfectly seasoned, Beth turned on her heel and slipped through the swinging doors, disappearing into the dining area to confer with the evening's maître d' about the final dessert presentation. Beth quickly pulled her phone from her pocket and shot off a text to Charles - "Apple's salted".



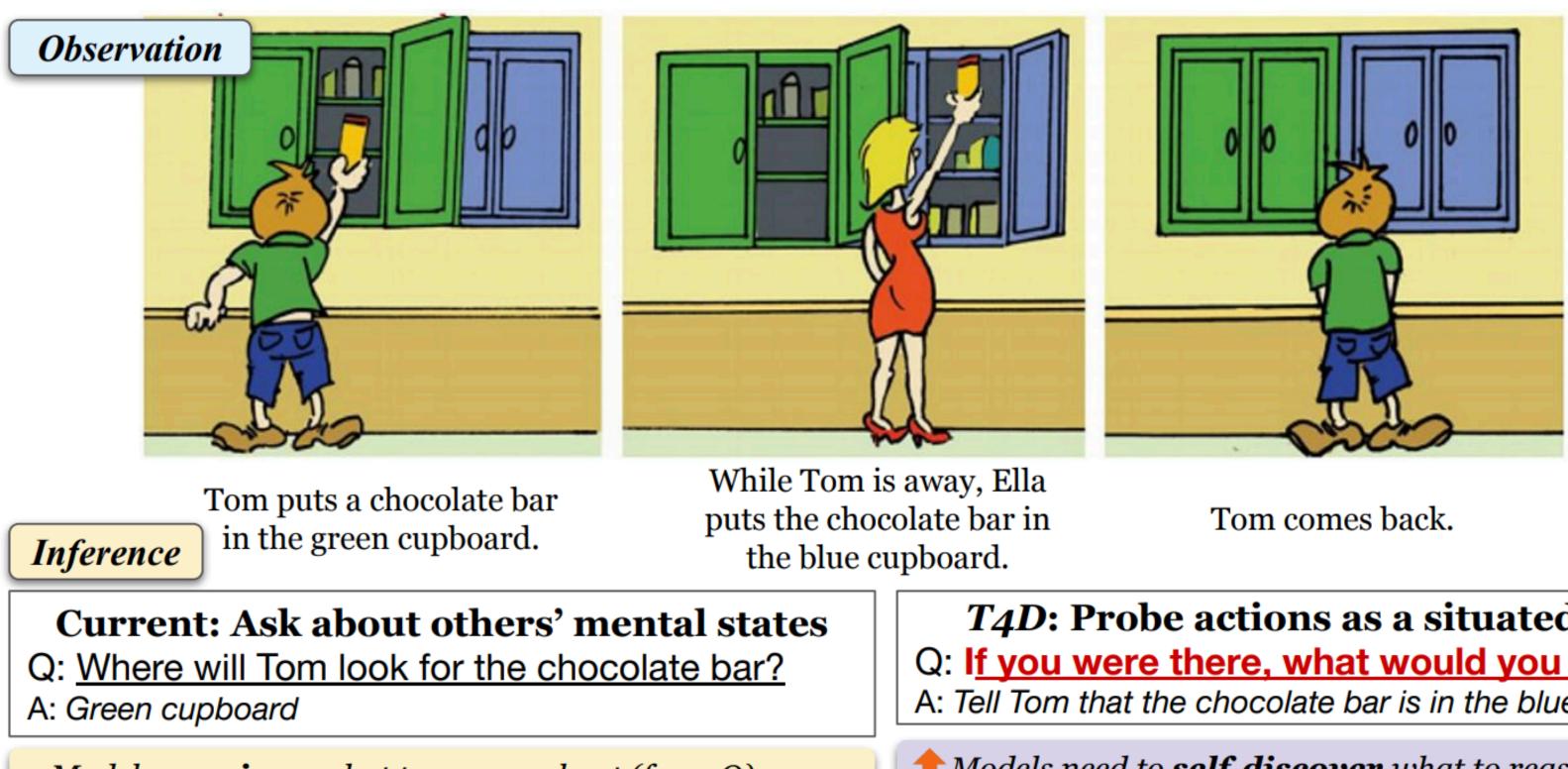
[A subset of] TrackTheMind results



Natural Language Processing - CSE 447

$a_{ ext{enter}}, a_{ ext{leave}}, \dots$	GPT-40 Accuracy
er }	.40
<u>,</u> }	.17
ateObjState }	.35
eObjRoom }	.05
/info-* }	.36
a_{info-*}	.24
$a_{\text{chitChat-}*}, \boxed{a_{\text{info-}*}}$.71
· }	.76
}	.46

Comment: LLMs are inconsistent, part 1000



- Models are **given** what to reason about (from Q)

Action

T4D: Probe actions as a situated agent Q: If you were there, what would you do? A: Tell Tom that the chocolate bar is in the blue cupboard

1 Models need to **self-discover** what to reason about.

Zhou, Pei, et al. HOW FAR ARE LARGE LANGUAGE MODELS FROM AGENTS WITH THEORY-OF-MIND? 2024

Improving Reasoning

At Training time vs. Inference time

Natural Language Processing - CSE 447

TrackTheMind: fine-tuning for improving reasoning

What if we used all the data we generated to teach a small model to be a better theory of mind reasoner?

	ToMi	Hi-ToM	BigToM	OpenToM (F1)	FANToM
Llama-3.1 8B Instruct	68%	30%	75%	.39	0.3%
TRACKTHEMIND-8B	94% (+26)	52% (+22)	79% (+4)	.42 (+.03)	0.5% (+0.02)

Example of a possible action plan when even frontier models cannot generate good data for knowledge distillation! (See also Jung et al., 2023 in the previous lecture)

Natural Language Processing - CSE 447

Inference-time algorithms for improving reasoning

- Improving reasoning at training time
 - **Pros:** you hopefully finish with an overall better model!
- Improving reasoning at inference time
 - **Pros:** does not require training data
 - may not generalize too well

• Cons: you need to find good data, which may be difficult; you might overfit

• **Cons:** possibly high cost we pay every time we want to run an algorithm;

Inference-time algorithms for improving reasoning: CoT does not seem to be the holy grail

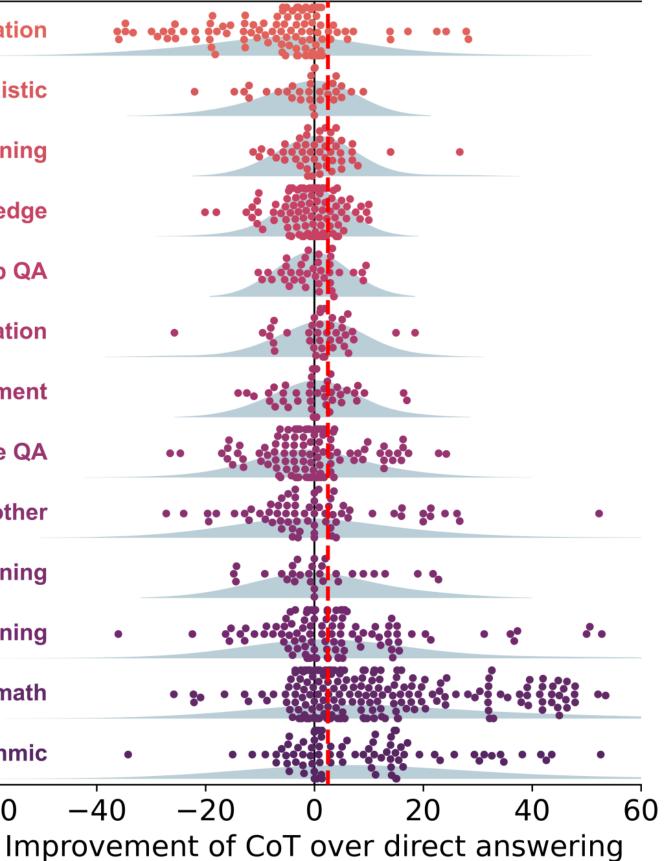
Ме	ta-	an	a	lys

-	
** *****	text classification
•	meta-linguistic
	commonsense reasoning
••	encyclopedic knowledge
	multi-hop QA
•	generation
	entailment
••	context-aware QA
•••	other
	spatial & temporal reasoning
• • •	logical reasoning
• •	math
•	symbolic & algorithmic
-40 -20	-60
rovomont o	

SPRAGUE ET AL 2024. TO COT OR NOT TO COT? CHAIN-OF-THOUGHT HELPS MAINLY ON MATH AND SYMBOLIC REASONING.

Natural Language Processing - CSE 447

sis of CoT improvements



Inference-time algorithm example for improving theory of mind through symbolic representations

Integrating Belief Graphs to LLMs

Natural Language Processing - CSE 447

Minding Language Models' (Lack of) Theory of Mind: A Plug-and-Play Multi-Character Belief Tracker

Y Outstanding Paper Award at ACL 2023

Melanie Sclar

Sachin Kumar

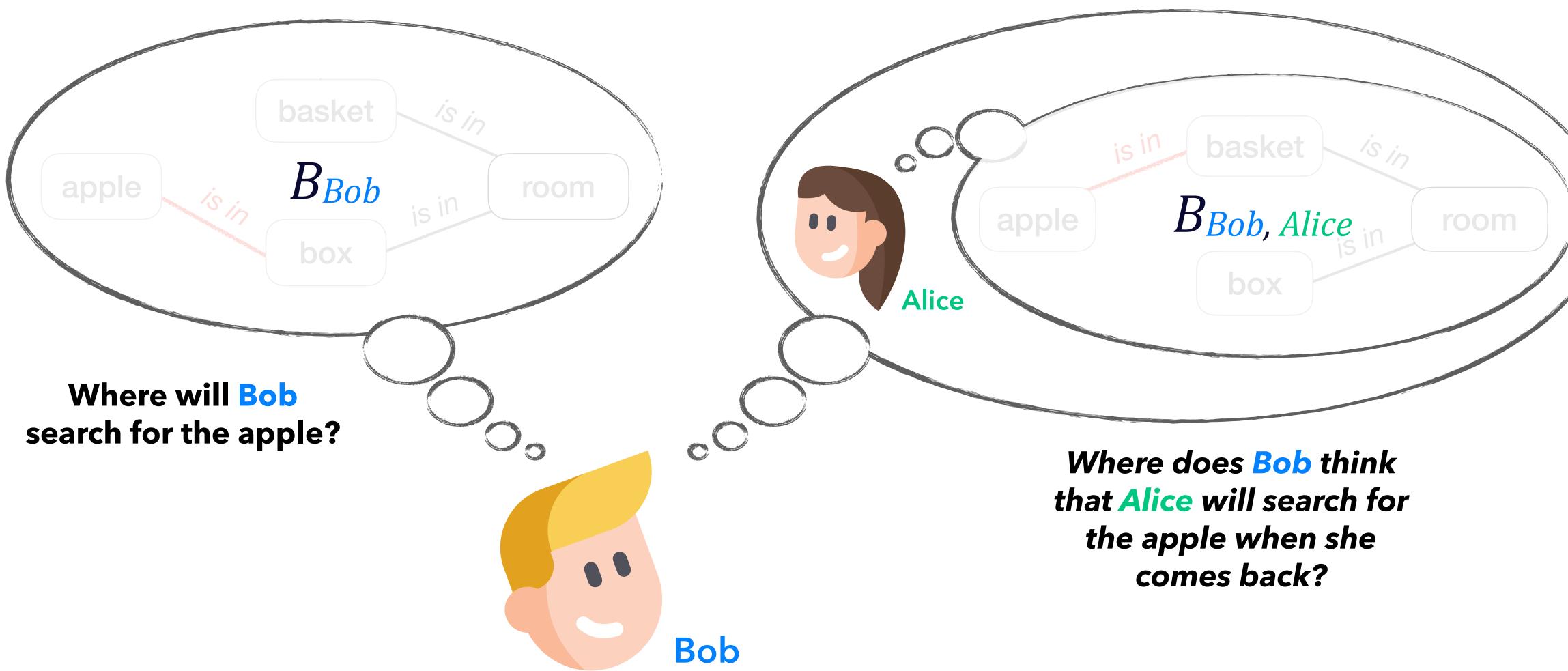
Peter West

Alane Suhr

Yejin Choi

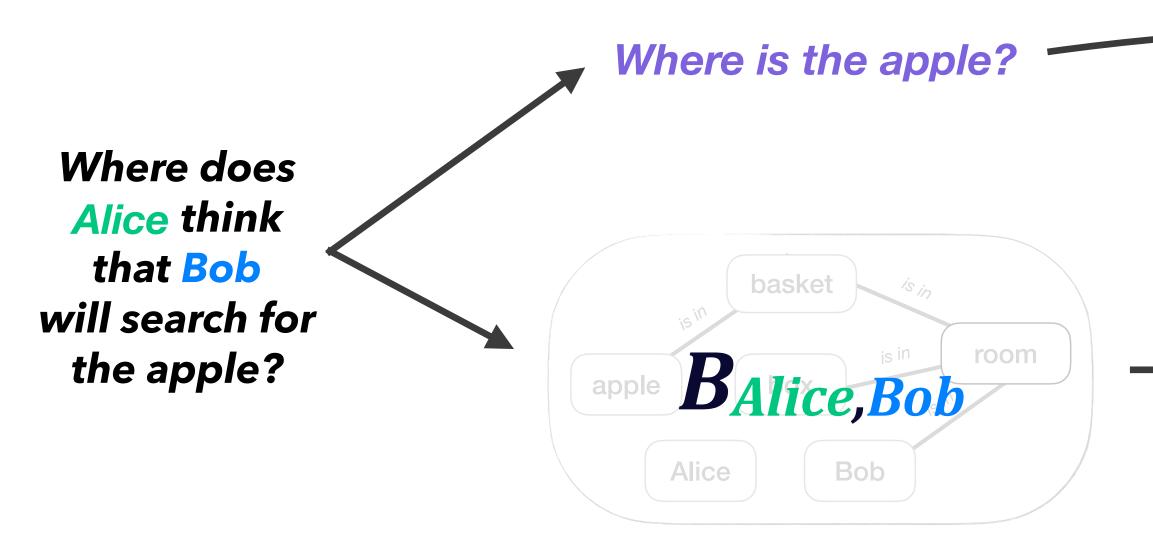
Natural Language Processing - CSE 447

Graphical Representations of Local Context



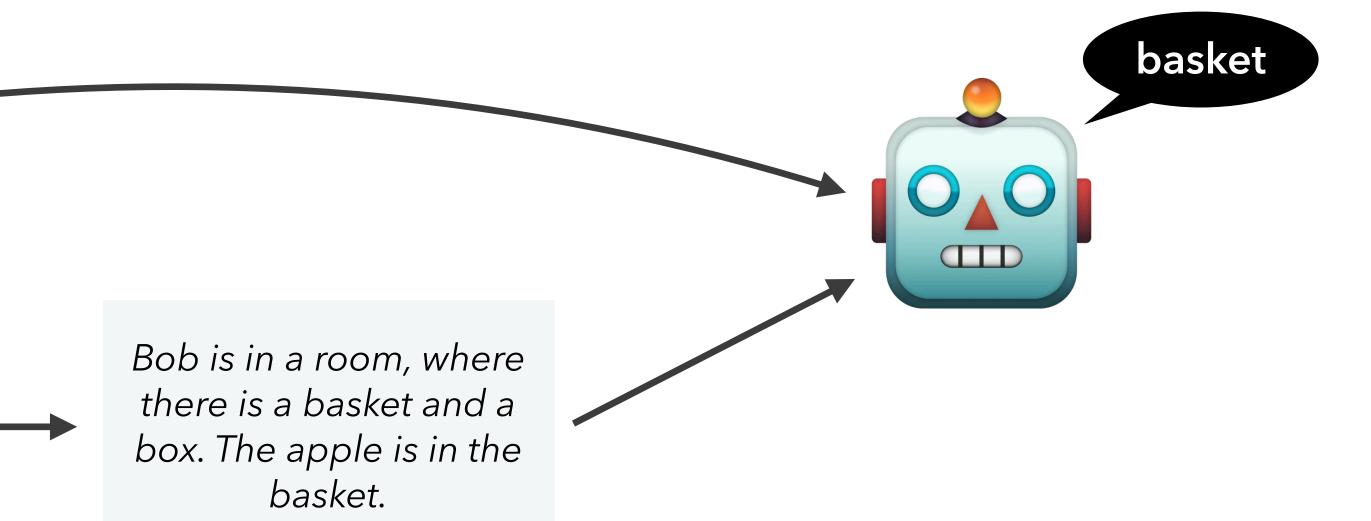
Natural Language Processing - CSE 447

Symbolic ToM Overview



1. Detect entities in question, retrieve belief graph and perform recursion over the question

2. Retrieve sentences captured by the graph



3. Feed to Language Model

Results: Out-of-Domain Performance Story Structure Generalization

Natural Language Processing - CSE 447

	D_1	D_2	D_3			
SYMBOLICTOM + Off-the-shelf models						
	89 (+81)					
	93 (+24)					
LLaMA-13B	78 (+52)	84 (+48)	84 (+47)			
Supervised models						
TTT	49	65	78			
Finetuned GPT3	51	68	32			

ToM for this lecture

"I know that you believe you understand what you think I said, but I'm not sure you realize that what you heard is not what I meant."

Natural Language Processing - CSE 447

Alan Greenspan

68

