PAUL G.
ALLEN W

SCHOOL UNIVERSITY of
WASHINGTON

Natural Language Processing
CSE 447 /547 M

Lecturer: Kabir Ahuja
Slides adapted from Liwei Jiang, John Hewitt, Anna Goldie

Natural Language Processing - CSE 447 / 547 M Pre-training



Major Paradigms in NLP

Liu et al. 2021

Natural Language Processing - CSE 447 / 547 M Pre-training


https://arxiv.org/pdf/2107.13586

Major Paradigms in NLP

Paradigm Engineering Task Relation
CLS TAG
Features o [

a. Fully Supervised Learning

(Non-Neural Network) (e.g. word identity, part-of-speech, L

sentence length) -
GEN

Liu et al. 2021

Natural Language Processing - CSE 447 / 547 M Pre-training


https://arxiv.org/pdf/2107.13586

Major Paradigms in NLP

Paradigm Engineering Task Relation
CLS TAG
. . Features oM [
a. Fully Supervised Learning (e.g. word identity, part-of-speech, []
(Non-Neural Network) sentence length)
| |GEN
CLS TAG
. . Architecture o [
8\15111131}1’ ;‘;g‘:}g‘; 1ks)ed Learning (e.g. convolutional, recurrent, L
self-attentional)
| |GEN

Liu et al. 2021

Natural Language Processing - CSE 447 / 547 M Pre-training


https://arxiv.org/pdf/2107.13586

Major Paradigms in NLP

Paradigm Engineering Task Relation

CLS TAG
Features oM [

(e.g. word identity, part-of-speech, L]
sentence length)

a. Fully Supervised Learning
(Non-Neural Network)

| |GEN

TAG

. . Architecture o [
b. Fully Supervised Learning (e.g. convolutional, recurrent, ]
(Neural Network)

self-attentional)

Liu et al. 2021

Natural Language Processing - CSE 447 / 547 M Pre-training


https://arxiv.org/pdf/2107.13586

Major Paradigms in NLP

Paradigm Engineering Task Relation

CLS TAG
Features oM [

(e.g. word identity, part-of-speech, L]
sentence length)

a. Fully Supervised Learning
(Non-Neural Network)

| |GEN

Pre 2017

TAG
Architecture ] oM [

(e.g. convolutional, recurrent, []
self-attentional)

b. Fully Supervised Learning
(Neural Network)

Liu et al. 2021

Natural Language Processing - CSE 447 / 547 M Pre-training


https://arxiv.org/pdf/2107.13586

Major Paradigms in NLP

Paradigm Engineering Task Relation Wh at we h ave seen so f ar

CLS TAG
Features oM [

(e.g. word identity, part-of-speech, L]
sentence length)

a. Fully Supervised Learning
(Non-Neural Network)

| |GEN

Pre 2017

TAG
Architecture ] oM [

(e.g. convolutional, recurrent, []
self-attentional)

b. Fully Supervised Learning
(Neural Network)

Liu et al. 2021

Natural Language Processing - CSE 447 / 547 M Pre-training


https://arxiv.org/pdf/2107.13586

Major Paradigms in NLP

Paradigm Engineering Task Relation

What we have seen so far

CLS TAG

a. Fully Supervised Learning Features O v [

(Non-Neural Network) (e.g. word identity, part-of-speech, L

sentence length) -
GEN

Pre 2017

TAG

. : Architecture
b. Fully Supervised Learning (e.g. convolutional, recurrent,
(Neural Network)

self-attentional)

Objective
c. Pre-train, Fine-tune (e.g. masked language modeling,
next sentence prediction)

2017-2019

Liu et al. 2021

Natural Language Processing - CSE 447 / 547 M Pre-training


https://arxiv.org/pdf/2107.13586

Major Paradigms in NLP

Paradigm Engineering Task Relation

What we have seen so far

CLS TAG

a. Fully Supervised Learning Features O v [

(Non-Neural Network) (e.g. word identity, part-of-speech, L

sentence length) -
GEN

Pre 2017

TAG

. : Architecture
b. Fully Supervised Learning (e.g. convolutional, recurrent,
(Neural Network)

self-attentional)

Objective
c. Pre-train, Fine-tune (e.g. masked language modeling,
next sentence prediction)

2017-2019

as. - me 2021- Present?

d. Pre-train, Prompt, Predict Prompt (e.g. cloze, prefix)

“-SGEN

Liu et al. 2021

Natural Language Processing - CSE 447 / 547 M Pre-training


https://arxiv.org/pdf/2107.13586

Major Paradigms in NLP

Paradigm Engineering Task Relation Wh at we h ave seen so f ar

CLS TAG

. . Features oM [
a. Fully Supervised Learning , , . 2
(Non-Neural Network) (e.g. word identity, part-of-speech,

sentence length) -
GEN

Pre 2017

TAG

. : Architecture
b. Fully Supervised Learning (e.g. convolutional, recurrent,
(Neural Network)

self-attentional)

Objective
c. Pre-train, Fine-tune (e.g. masked language modeling,
next sentence prediction)

2017-2019

as. - me 2021- Present?

d. Pre-train, Prompt, Predict Prompt (e.g. cloze, prefix)

e. Pre-train, Alignment, (Fine-tune), Predict | 2022- Present

Liu et al. 2021

Natural Language Processing - CSE 447 / 547 M Pre-training


https://arxiv.org/pdf/2107.13586

Major Paradigms in NLP

Paradigm Engineering Task Relation Wh at we h ave seen so f ar

CLS TAG

. . Features oM [
a. Fully Supervised Learning , , . 2
(Non-Neural Network) (e.g. word identity, part-of-speech,

sentence length) -
GEN

Pre 2017

TAG

. : Architecture
b. Fully Supervised Learning (e.g. convolutional, recurrent,
(Neural Network)

self-attentional)

Objective
c. Pre-train, Fine-tune (e.g. masked language modeling,
next sentence prediction)

2017-2019

as. - me 2021- Present?

d. Pre-train, Prompt, Predict Prompt (e.g. cloze, prefix)

e. Pre-train, Alignment, (Fine-tune), Predict | 2022- Present

Liu et al. 2021

Natural Language Processing - CSE 447 / 547 M Pre-training


https://arxiv.org/pdf/2107.13586

Major Paradigms in NLP

Paradigm Engineering Task Relation

What we have seen so far

CLS TAG
Features oM [

(e.g. word identity, part-of-speech, L]
sentence length)

a. Fully Supervised Learning
(Non-Neural Network)

| |GEN

Pre 2017

TAG

. : Architecture o [
b. Fully Supervised Learning (e.g. convolutional, recurrent, ]
(Neural Network) self-attention

Pre-training common
eyl 3 cross all major paradigms post 2017-2019

2017
s ome 2021- Present?
d. Pre-train, Prompt, Predict Prompt (e.g. cloze, prefix) | \‘?‘/ |
%GEN
e. Pre-train, Alignment, (Fine-tune), Predict | 2022_ Present

Liu et al. 2021

Natural Language Processing - CSE 447 / 547 M Pre-training


https://arxiv.org/pdf/2107.13586

Major Paradigms in NLP

Paradigm Engineering Task Relation

What we have seen so far

CLS TAG
Features oM [

(e.g. word identity, part-of-speech, L]
sentence length)

a. Fully Supervised Learning
(Non-Neural Network)

| |GEN

Pre 2017

TAG
Architecture ] oM [

(e.g. convolutional, recurrent, []
self-attention

b. Fully Supervised Learning
(Neural Network)

Pre-training common

across all major paradigms post [CaARarAY
2017

What we will see in the
coming lectures

c. Pre-train, Fine-tune

CLS  TAG
= S

W\D/w

|

=SGEN

2021- Present?

d. Pre-train, Prompt, Predict Prompt (e.g. cloze, prefix)

e. Pre-train, Alignment, (Fine-tune), Predict \ 2022- Present

Liu et al. 2021

Natural Language Processing - CSE 447 / 547 M Pre-training


https://arxiv.org/pdf/2107.13586

The Pre-training Revolution
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Pre-training has had a major, tangible impact on how well NLP systems work

Slide from Chris Manning. Lecture 9: Pre-training, CS224n Spring 2024
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Lecture Outline

1. Motivating Pre-training, aka Self-supervised Learning
2. Pre-training Architectures and Training Objectives
1. Encoders

2. Encoder-Decoders

3. Decoder
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Lecture Outline

1. Motivating Pre-training, aka Self-supervised Learning
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Issues with Fully Supervised Learning Approaches

Food Review: “| recently had the pleasure of dining at Fusion Bites, and the
experience was nothing short of spectacular. The menu boasts an exciting

blend of global flavors, and each dish is a masterpiece in its own right.”

Say that we are given a dataset of 100K food reviews with sentiment
labels, how do we train a model to perform sentiment analysis over
unseen food reviews?
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Issues with Fully Supervised Learning Approaches

Food Review: “| recently had the pleasure of dining at Fusion Bites, and the
experience was nothing short of spectacular. The menu boasts an exciting

blend of global flavors, and each dish is a masterpiece in its own right.”

Say that we are given a dataset of 100K food reviews with sentiment
labels, how do we train a model to perform sentiment analysis over
unseen food reviews?

We can directly train a randomly initialized model to take in food
review texts and output “positive” or “negative” sentiment labels.
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Issues with Fully Supervised Learning Approaches

Food Review: | recently had the pleasure of dining at Fusion Bites, and the
experience was nothing short of spectacular. The menu boasts an exciting
blend of global flavors, and each dish is a masterpiece in its own right.”

Movie Review: "The narrative unfolds with a steady pace, showcasing a
blend of various elements. While the performances are competent, and the
cinematography captures the essence of the story, the overall impact falls
somewhere in the middle."

It we are instead given movie reviews to classity, can we use the same
system trained from food reviews to predict the sentiment?
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Food Review: | recently had the pleasure of dining at Fusion Bites, and the
experience was nothing short of spectacular. The menu boasts an exciting
blend of global flavors, and each dish is a masterpiece in its own right.”

Movie Review: "The narrative unfolds with a steady pace, showcasing a
blend of various elements. While the performances are competent, and the
cinematography captures the essence of the story, the overall impact falls
somewhere in the middle."

It we are instead given movie reviews to classity, can we use the same
system trained from food reviews to predict the sentiment?

May NOT generalize well due to distributional shift!
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Issues with Fully Supervised Learning Approaches

Food Review: | recently had the pleasure of dining at Fusion Bites, and the
experience was nothing short of spectacular. The menu boasts an exciting
blend of global flavors, and each dish is a masterpiece in its own right.”

Movie Review: "The narrative unfolds with a steady pace, showcasing a
blend of various elements. While the performances are competent, and the

cinematography captures the esseg | Fully Supervised

somewhere in the middle." Learning
Collect a labeled dataset for movie reviews and

If we are instead given movie train a model from scratch on this new
dataset

system trained from food reviews

May NOT generalize well due to distributional shift!
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Transfer Learning: A History Lesson from Computer

Vision

® |nstead of training a randomly initialized neural network every time we
encounter a new task or domain,

® can we re-use the learned representations from one task/domain for
another?
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Transfer Learning: A History Lesson from Computer

Vision

® |nstead of training a randomly initialized neural network every time we
encounter a new task or domain,

® can we re-use the learned representations from one task/domain for
another?

Idea: Train a (very) deep neural
network on a large-scale dataset
and re-use the learned
representations from this network to
adapt to new tasks

Image from Lecture 7 CS231n slides by Fei-Fei Li, Ehsan Adeli, Zane Durante
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® |nstead of training a randomly initialized neural network every time we
encounter a new task or domain,

® can we re-use the learned representations from one task/domain for
another?

Idea: Train a (very) deep neural
network on a large-scale dataset
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Transfer Learning: A History Lesson from Computer

Vision

® |nstead of training a randomly initialized neural network every time we
encounter a new task or domain,

® can we re-use the learned representations from one task/domain for

another?

Idea: Train a (very) deep neural
network on a large-scale dataset
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Why it took so long for NLP?

® Since 2014, it had become common practice in the Computer Vision
community to download a pre-trained (on Image Net) deep neural
network model and “tine-tune” it on the problem at hand instead of
starting from scratch.

® This wasn'tthe case in NLP till late 2017s.

® |t was common to use pre-trained word vectors like word2vec, GloVe for
NLP tasks, and while those would help boost performance, most often it
was a marginal improvement.

Natural Language Processing - CSE 447 / 547 M Pre-training



Why it took so long for NLP?

® Since 2014, it had become common practice in the Computer Vision
community to download a pre-trained (on Image Net) deep neural
network model and “tine-tune” it on the problem at hand instead of

starting from scratch. You might have

seen this already

® This wasn'tthe case in NLP till late 2017s. while iltx;“’““g

® |t was common to use pre-trained word vectors like word2vec, GloVe for
NLP tasks, and while those would help boost perftormance, most often it
was a marginal improvement.
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Why it took so long for NLP?

We can mostly boil down this delay to two factors
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Why it took so long for NLP?

We can mostly boil down this delay to two factors
1. Lack of a large-scale general dataset
1. It wasn't clear what would be a suitable NLP task most representative of the space of

NLP tasks (classification, QA, NLI, Parsing, Language Modeling?). Getting high-
quality label at such a large scale was also a challenge.
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Why it took so long for NLP?

We can mostly boil down this delay to two factors
1. Lack of a large-scale general dataset
1. It wasn't clear what would be a suitable NLP task most representative of the space of

NLP tasks (classification, QA, NLI, Parsing, Language Modeling?). Getting high-
quality label at such a large scale was also a challenge.

2. Neural Network Models for NLP were usually very shallow
1. Pre-2017, dominant models used in NLP were recurrent neural networks e.g. LSTMs

2. These models were usually 1-2 hidden layers, and scaling them to a large number of
layers was non-trivial as these models were notoriously hard to train
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Why it took so long for NLP?

What changed starting

from 20177?

We can mostly boil down this delay to two factors
1. Lack of a large-scale general dataset
1. It wasn't clear what would be a suitable NLP task most representative of the space of

NLP tasks (classification, QA, NLI, Parsing, Language Modeling?). Getting high-
quality label at such a large scale was also a challenge.

2. Neural Network Models for NLP were usually very shallow
1. Pre-2017, dominant models used in NLP were recurrent neural networks e.g. LSTMs

2. These models were usually 1-2 hidden layers, and scaling them to a large number of
layers was non-trivial as these models were notoriously hard to train

Natural Language Processing - CSE 447 / 547 M 10 Pre-training



Why it took so long for NLP?

What changed starting

from 20177?

We can mostly boil down this delay to two factors

1. Lack of a large-scale general dataset Self-supervised Learning

1. It wasn't clear what would be a suitable NLP task most representative of the space of
NLP tasks (classification, QA, NLI, Parsing, Language Modeling?). Getting high-
quality label at such a large scale was also a challenge.

2. Neural Network Models for NLP were usually very shallow
1. Pre-2017, dominant models used in NLP were recurrent neural networks e.g. LSTMs

2. These models were usually 1-2 hidden layers, and scaling them to a large number of
layers was non-trivial as these models were notoriously hard to train
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Part of input data
itself provides labels instead of requring e’

external labels. What SSL model have we already °

seen? What changed starting

from 20177?

o two factors

1. Lack of a large-scale general dataset  Self-supervised Learning

1. It wasn't clear what would be a suitable NLP task most representative of the space of
NLP tasks (classification, QA, NLI, Parsing, Language Modeling?). Getting high-
quality label at such a large scale was also a challenge.

2. Neural Network Models for NLP were usually very shallow
1. Pre-2017, dominant models used in NLP were recurrent neural networks e.g. LSTMs

2. These models were usually 1-2 hidden layers, and scaling them to a large number of
layers was non-trivial as these models were notoriously hard to train
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from 20177?

o two factors

1. Lack of a large-scale general dataset elf-supervised Learning

1. It wasn't clear what would be a suitable NLP task most representative of the space of
NLP tasks (classification, QA, NLI, Parsing, Language Modeling?). Getting h|gh
quality label at such a large scale was also a challenge. >y

2. Neural Network Models for NLP were usually very shallow Transformers )
1. Pre-2017, dominant models used in NLP were recurrent neural networks e.g. L "Ms

2. These models were usually 1-2 hidden layers, and scaling them to a large number of
layers was non-trivial as these models were notoriously hard to train
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Self-supervised Pre-training for Learning Underlying
Patterns, Structures, and Semantic Knowledge
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Self-supervised Pre-training for Learning Underlying
Patterns, Structures, and Semantic Knowledge

® Pre-training through language modeling [Dai
and Le, 2015]

e Model Py(w,|w;.,_), the probability
distribution of the next word given previous

contexts. are composed of tiny  water droplet EOS

® There’s lots of (English) data for this! E.g.,
books, websites.

Decoder

® Self-supervised training of a neural (Transformers, LSTM, ...)
network to perform the language modeling
task with massive raw text data.

® Save the network parameters to reuse later.

Clouds are composed of tiny water droplet

Natural Language Processing - CSE 447 / 547 M Pre-training


https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf

Self-supervised Pre-training for Learning Underlying
Patterns, Structures, and Semantic Knowledge

Why is
this called self-supervised?

® Pre-training through language modeling [Dai

and Le, 2015] The labels come from the input
® Model Py(w,|w;.,_;). the probability data itself!

distribution of the next word given previous
contexts. are composed of tiny  water droplet EOS

® There’s lots of (English) data for this! E.g.,

books, websites.
Decoder

® Self-supervised training of a neural (Transformers, LSTM, ...)
network to perform the language modeling
task with massive raw text data.

® Save the network parameters to reuse later.

Clouds are composed of tiny water droplet
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Supervised Fine-tuning for Specific Tasks

Step 1:
Pre-training

are composed of tiny water droplet EOS

Decoder

(Transformers, LSTM, ...)

Clouds are composed of tiny water droplet

Abundant data; learn general language
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Supervised Fine-tuning for Specific Tasks

Step 1: _> Step 2:

Pre-training Fine-tuning

are composed of tiny water droplet EOS c orQ

Decoder Decoder

(Transformers, LSTM, ...) (Transformers, LSTM, ...)

Clouds are composed of tiny water droplet ... the movie was ...

Abundant data; learn general language Limited data; adapt to the task
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Supervised Fine-tuning for Specific Tasks

Step 1: _> Step 2:

Pre-training Fine-tuning

are composed of tiny water droplet EOS c orQ

Decoder Decoder

(Transformers, LSTM, ...) (Transformers, LSTM, ...)

Clouds are composed of tiny water droplet ... the movie was ...
Abundant data; learn general language Limited data; adapt to the task
CLS ~  TAG
o . Objective LM
Remember this is pa radlgm 3 from before c. Pre-train, Fine-tune (e.g. masked language modeling, ' ‘

next sentence prediction)
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Why this works?
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Lots of Information in Raw Texts

| went to Hawaii for snorkeling, hiking, and whale

| walked across the street, checking for traffic my shoulders.

| use and fork to eat steak.

Ruth Bader Ginsburg was born in

University of Washington is located at , Washington.

| was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21,

Sugar is composed of carbon, hydrogen, and
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Lots of Information in Raw Texts
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Preposition | walked across the street, checking for traffic __over__ my shoulders.
Commonsense |use knife and fork to eat steak.
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Lots of Information in Raw Texts

Verb | went to Hawaii for snorkeling, hiking, and whale _watching .
Preposition | walked across the street, checking for traffic __over__ my shoulders.
Commonsense |use knife and fork to eat steak.

Time Ruth Bader Ginsburg was bornin __ 1933 __.

Location University of Washington is located at __Seattle __, Washington.

Math | was thinking about the sequence thatgoes 1, 1, 2, 3,5,8, 13,21, _34__
Chemistry Sugar is composed of carbon, hydrogen, and _oxygen __.
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Lots of Information in Raw Texts

Verb | went to Hawaii for snorkeling, hiking, and whale _watching .
Preposition | walked across the street, checking for traffic __over__ my shoulders.
Commonsense |use knife and fork to eat steak.

Time Ruth Bader Ginsburg was bornin __ 1933 __.
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The Stochastic Gradient Descent Angle

Why should pre-training and then fine-tuning help?

® Providing parameters @ by approximating the pre-training loss,
mein gpretrain(‘g)-

® Then, starting with parameters 6 approximating fine-tuning loss,

m@in 3finetune(6’)'

e Stochastic gradient descent sticks (relatively) close to 0 during fine-
tuning.
® So, maybe the fine-tuning local minima near 6 tend to generalize well!

® And/or, maybe the gradients of fine-tuning loss near () propagate nicely!
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Advantages of Pre-training & Fine-tuning

® Leveraging rich underlying information from abundant raw texts.

® Reducing the reliance of task-specific labeled data that is difficult or
costly to obtain.

¢ |nitializing model parameters for more generalizable NLP
applications.

® Saving training cost by providing a reusable model checkpoints.
® Providing robust representation of language contexts.
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Solving Shallow Networks Problem in NLP: Enter

) ‘_—A‘I:. -
N,

Transformers 7}
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Solving Shallow Networks Problem in NLP: Enter

Transformers
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Solving Shallow.
Transformers
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Solving Shallow.
Transformers

Transformers managed to avoid the two major
problems that made Recurrent Neural
Networks hard to scale on larger compute and
depths:
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e 1A
N,

Solving Shallow Networks Problem in NLP: Enter

Transformers

Qutput

Transformers managed to avoid the two major Probapiles

problems that made Recurrent Neural Soltrey

Networks hard to scale on larger compute and Linar

A

depths: (1 Add&'Norm N

Feed
Forward

® o o ® o * J
e Highly Parallelizable During Training: : ) | oz Mo | wan o sieep

. . Add & Norm ,
Need not wait for the computation at the l oo Ve

Attention

. . Forward N x
orevious time step to complete to execute X T S R

- N I Add & Norm I T T |
the next step x Add & Norm o=~

Nult-Head Multi-Head T T T T
Attention Attention <s a

A 4 2 A+ 2
O ) v,

Positional Positional
. + + .
Encoding ?_® Encoding
Input Output
Embedding Embedding

T T

Inputs Outputs
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Attention is all You Need. 2017.
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e 1A
W,

Solving Shallow Networks Problem in NLP: Enter

Transformers

Qutput
Transformers managed to avoid the two major Probebilics
problems that made Recurrent Neural Sofgrex
Networks hard to scale on larger compute and L
depthS: =z & Norm N
Feed
Forward
® [ J ( J [ J ( J * )
e Highly Parallelizable During Training: - — ) | =5atom | want o sioep
. . Add & Norm _' ©00 @00 ©00 ©00
Need not wait for the computation at the = ey 7 7 7 7
. : Forward N
orevious time step to complete to execute L - = )|
Add & N
the next step Nx AGGE Nom ———
MUlt-Head Multi-Head T T T T
Attention Attention <s> I want to
e Avoids Training Complications like = | =)
Vanishing Gradients: Unlike RNNs, which Positional @—c? ?_® Positional
. Encoding Encoding
have a fixed state that gets updated —r Sotont
. Embedding Embedding ‘
repeatedly, transformers have dynamic T T
memory, which also avoids issues such as Inputs Outputs
(shifted right)

vanishing gradients

Attention is all You Need. 2017.
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Lecture Outline

2. Pre-training Architectures and Training Objectives
1. Encoders

2. Encoder-Decoders

3. Decoder
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3 Pre-training Paradigms/Architectures

® [ .g., BERT, RoBERTa, DeBERTS, ...
Encoder ® Autoencoder model

® Masked [anguage modeling

® E.g.,T5, BART,...

Encoder-Decoder .
seq2seq model
e E.g,GPT,GPT2, GPT3, ...
® Autoreqgressive model
Decoder d

o Left-to-right language modeling
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3 Pre-training Paradigms/Architectures

® Bidirectional: can condition
on the future context

Encoder

® Map two sequences of

Encoder-Decoder .
S different length together

® | anguage modeling; can only
Decoder = condition on the past context
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Encoder

® Map two sequences of

Encoder-Decoder .
S different length together
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Encoder: Architecture

Full-Transformer Architecture

(Encoder-Decoder)
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Encoder: Architecture

Full-Transformer Architecture
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Encoder: Architecture

Full-Transformer Architecture

(Encoder-Decoder) Encoder-Only Transformer
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Encoder: Architecture

Full-Transformer Architecture
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Encoder: Training Objective

® So far, we've looked at language modeling for
pre-training.

® | anguage Model Pretraining is problematic for
encoders

® \Why?
® Encoders get bidirectional contexts

® The model can cheat by just looking at the
next token when predicting it without
actually learning anything about language!
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Encoder: Training Objective

® So far, we've looked at language modeling for
pre-training.

® | anguage Model Pretraining is problematic for went to  the mal
encoders

® \Why?
® Encoders get bidirectional contexts

® The model can cheat by just looking at the T
next token when predicting it without
actually learning anything about language!
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Encoder: Training Objective reineazom

® How to encode information from both bidirectional contexts?
® (General |[dea: text reconstruction!

® Yourtime is [MASK], so don't [MASK] it living someone else's life.
Don't be trapped by [MASK], which is [MASK] with the results of
other [MASK]'s thinking. — [MASK] Jobs

Natural Language Processing - CSE 447 / 547 M Pre-training


https://arxiv.org/pdf/1810.04805.pdf

Encoder: Training Objective reineazom

® How to encode information from both bidirectional contexts?
® (General |[dea: text reconstruction!

® Yourtime is [MASK], so don't [MASK] it living someone else's life.
Don't be trapped by [MASK], which is [MASK] with the results of
other [MASK]'s thinking. — [MASK] Jobs

went store hl’ co e hT — EIlCOdﬁI’(bUl, e wT)

hi,..., hp y,- ~ sz + b

Only add loss terms from the masked tokens. If X is the masked version
| [M] to the [M] of x, we’re learning py(x | X). Called Masked Language model (MLM).
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Encoder: Training Objective reineazom

® How to encode information from both bidirectional contexts?
® (General |[dea: text reconstruction!

® Yourtime is limited so don't waste itliving someone else's life.
Don't be trapped by dogma which is living with the results of
other pegp‘els thlﬂklﬂg — Steve Jobs

hy, ..., hyp = Encoder(wl, ooy wT)

hi,..., hp y,- ~ sz + b

Since the identity
of the word is masked
the model can no

| Only add loss terms from the masked tokens. If X is the masked version
onger cheat

to the [M] of x, we’re learning py(x | X). Called Masked Language model (MLM).
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Encoder: BERT Bidirectiona\. Encoder [Devlin et al., 2018]

Representations from Transtormers

® 2 Pre-training Objectives:
e Masked LM: Choose a random 15% of tokens to

predict. [Predict these!]

® For each chosen token: ‘
® Replace it with [MASK] 80% of the time.
. X . Encoder
® Replace it with a random token 10% of the time.

A A A A A

® | ecave it unchanged 10% of the time (but still
predict it!).

pizza to the [M]
® Next Sentence Prediction (NSP) / / \

® 50% of the time two adjacent sentences are in the [Replaced] [Not replaced] [Masked]
correct order.

® This actually hurts model learning based on later
work!
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[Devlin et al., 2018]

Enccdero BERT Bidirectional Encoder

Representations from Transtormers

® 2 Pre-training Objectives:

¢ Masked LM: Choose arandom 15% o
predict.

® For each chosen token:
® Replace it with [MAS
® Replace it with a random tolg
"0t the time (but still

-

A

WHY keeping some tokens unchanged?

sder

A A A A A

® | ecave it unchanged

predict it!). pizza  to the [M]
® Next Sentence Prediction (NSP) / / ‘

® 50% of the time two adjacent sentences are in the
correct order.

[Replaced] [Not replaced] [Masked]

® This actually hurts model learning based on later
work!
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[Devlin et al., 2018]

Enccdero BERT Bidirectional Encoder

Representations from Transtormers

® 2 Pre-training Objectives:

¢ Masked LM: Choose arandom 15% o
predict.

® [For each chosen token:
® Replace it with [MAS There's no [MASK] during fine-tuning time!

-

A

WHY keeping some tokens unchanged?

sder

® Replace it with a random tolg
8Ot the time (but still

A A A A A

® | ecave it unchanged

predict it!). pizza  to the [M]
® Next Sentence Prediction (NSP) / / ‘

® 50% of the time two adjacent sentences are in the
correct order.

[Replaced] [Not replaced] [Masked]

® This actually hurts model learning based on later
work!
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Encoder: BERT

Bidirectional Encoder
Representations from Transtormers

[Devlin et al., 2018]

Input ( [CLS] 1 ( my 1 (dog 1 ( IS 1(cute H [SEP] 1 ( he H likes W play 1 ( ##ing 1 ( [SEP] 1

Token

Embeddings E[CLS] Emy Edog Eis Ecute [SEP] Ehe EIikes Eplay ##ing E[SEP]
3= 3= 3= == == 3= 3= 3= == == 3=

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
a2 a2 e == =g a2 a2 a2 aa a a e

Position

Embeddings Eo E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
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Encoder: BERT

Special token added to the
beginning of each input sequence

Bidirectional Encoder
Representations from Transtormers

[Devlin et al., 2018]

Token
Embeddings E[CLS] Emy Edog Eis Ecute [SEP] Ehe likes play ##ing E[SEP]
3= 3= 3= == == 3= 3= 3= == == 3=
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
s 3= =i 3= 3= a2 3= =g =)= =)= s o
Position
Embeddings Eo E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
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Encoder: BERT

Special token added to the
beginning of each input sequence

Bidirectional Encoder
Representations from Transtormers

Special token to

separate sentence A/B

[Devlin et al., 2018]

Input ( [CLS] 1 my 1 (dog 1 ( IS 1(cute ( [SEP] 1 he H likes W play 1 ( ##ing 1 ( [SEP] 1

Token

Embeddings E[CLS] Emy Edog Eis Ecute [SEP] Ehe EIikes Eplay ##ing E[SEP]
3= 3= 3= == == 3= 3= 3= == == 3=

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
a2 a2 e == =g a2 a2 a2 aa a a e

Position

Embeddings Eo E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
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Encoder: BERT Bidirectional Encoder [Devlin et al., 2018]

Representations from Transtormers

Special token added to the Special token to

beginning of each input sequence separate sentence A/B
Input ( [CLS] 1 my 1 (dog 1 ( IS 1(cute ( [SEP] 1 he H likes W play 1 ( ##ing 1 ( [SEP] 1
Token
Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes Eplay E##ing E[SEP]
Segment
Embeddings
Position
Embeddings Eo E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Learned embedding to every token indicating
whether it belongs to sentence A or sentence B
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Encoder: BERT Bidirectional Encoder [Devlin et al., 2018]

Representations from Transtormers

Special token added to the Special token to

beginning of each input sequence separate sentence A/B
Input ( [CLS] 1 my 1 (dog 1 ( IS 1(cute ( [SEP] 1 he H likes W play 1 ( ##ing 1 ( [SEP] 1
Token
Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes Eplay E##ing E[SEP]
Segment
Embeddings
Position
Embeddings

Learned embedding to every token indicating

. Position of the token in the entire sequence
whether it belongs to sentence A or sentence B
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Encoder: BERT Bidirectional Encoder [Devlin et al., 2018]

Representations from Transtormers

Special token added to the Special token to Final embedding is the sum of
beginning of each input sequence separate sentence A/B all three!
Input ([CLS] 1 my 1 (dog 1 ( is chte ( [SEP] 1 he H likes W play 1 ( ##ing 1( [SEP] 1
Token
Embeddings E[CLS] Emy Edog EIS Ecute E[SEP] Ehe EIikes Eplay E##ing E[SEP]
Segment
Embeddings
Position
Embeddings

Learned embedding to every token indicating

. Position of the token in the entire sequence
whether it belongs to sentence A or sentence B
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Encoder: BERT (Fine-tuning)
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Encoder: BERT (Fine-tuning)

Single-Sentence Tasks like
SST-2 (Sentiment Analysis)

Natural Language Processing - CSE 447 / 547 M Pre-training



Encoder: BERT (Fine-tuning)

—

oo
BERT

E[CLS] E, E, Ey

i —

[CLS] Tok 1 Tok 2 Tok N

Single Sentence

Single-Sentence Tasks like
SST-2 (Sentiment Analysis)

Natural Language Processing - CSE 447 / 547 M Pre-training



Encoder: BERT (Fine-tuning)

Class ~
Label

*

Linear Layer
(768, )

BERT
E[CLS] E1 E2 EN
i —
[CLS] Tok 1 Tok 2 Tok N

Single Sentence

Single-Sentence Tasks like
SST-2 (Sentiment Analysis)
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Encoder: BERT (Fine-tuning)

Cross-Entropy Loss L(}, y)

*

Class ~
Label

*

Linear Layer
(768, )

BERT
E[CLS] E1 Ez EN
i —
[CLS] Tok 1 Tok 2 Tok N

Single Sentence

Single-Sentence Tasks like
SST-2 (Sentiment Analysis)
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Encoder: BERT (Fine-tuning)

Cross-Entropy Loss L(}, y)

*

Class ~

Label Backpropogate gradients and
¢ update weights using SGD

Linear Layer

(768, )

BERT
E[CLS] E1 Ez EN
i —
[CLS] Tok 1 Tok 2 Tok N

Single Sentence

Single-Sentence Tasks like
SST-2 (Sentiment Analysis)
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Encoder: BERT (Fine-tuning)

Cross-Entropy Loss L(}, y)

*

Class ~

Label Backpropogate gradients and

¢ update weights using SGD

Linear Layer

(768, )

BERT
E[CLS] E1 Ez EN
i —
[CLS] Tok 1 Tok 2 Tok N

Single Sentence

Single-Sentence Tasks like Sentence Pair Classification
SST-2 (Sentiment Analysis) Tasks like Natural Language
Inference

Natural Language Processing - CSE 447 / 547 M Pre-training



Encoder: BERT (Fine-tuning)

Cross-Entropy Loss L(J, y) Input: |

* Premise: A soccer game with multiple
Clnss - males playing
Label Backpropogate gradients and Hypothesis: Some men are playing a sport
4+ update weights using SGD Label: Entailment / Neutral / Contadiction

Linear Layer
(768, cil ———
2 B S
BERT

E[CLS] E1 Ez EN

e st i By 1

[CLS] Tok 1 Tok 2 Tok N

|
Single Sentence
Single-Sentence Tasks like Sentence Pair Classification
SST-2 (Sentiment Analysis) Tasks like Natural Language
Inference
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Encoder: BERT (Fine-tuning)

Cross-Entropy Loss L(}, y)

*

Class ~

Label Backpropogate gradients and
¢ update weights using SGD

Linear Layer

(768, )

BERT
E[CLS] E1 Ez EN
i —
[CLS] Tok 1 Tok 2 Tok N

Single Sentence

Single-Sentence Tasks like
SST-2 (Sentiment Analysis)

Input:

Premise: A soccer game with multiple
males playing

Hypothesis: Some men are playing a sport
Label: Entailment / Neutral / Contadiction

Class
Label

() () )

BERT
Ecs || Ey E L REsstlNE N = (NEy
o) () () (e () (5
| |
Sentence 1 Sentence 2

Sentence Pair Classification
Tasks like Natural Language
Inference
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Encoder: BERT

Bidirectional Encoder

[Devlin et al., 2018]

Representations from Transtormers

e SOTA at the time on a wide range of tasks after fine-tuning!

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 35k 2.5k i

Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAlI GPT 82.1/81.4 703 874 913 454 80.0 823  56.0 75.1
BERTBASE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

® QAQP: Quora Question Pairs (detect paraphrase questions)

® QNLI: natural language inference over question answering data

® SST-2: sentiment analysis

® ColLA: corpus of linguistic acceptability (detect whether sentences are grammatical.)

® STS-B: semantic textual similarity

® MRPC: microsoft paraphrase corpus

® RTE: a small natural language inference corpus
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Encoder: BERT Bidirectional Encoder [Devlin et al., 2018]

Representations from Transtormers

e SOTA at the time on a wide range of tasks after fine-tuning!

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k i
Pre-OpenAl SOTA 80.6/80.1 66.1  82.3 93.2 35.0 81.0 86.0  61.7 74.0
BiLSTM+ELMo+Attn  76.4/76.1 64.8  79.8 90.4 36.0 73.3 849  56.8 71.0
OpenAl GPT 82.1/81.4 703 874 913 45.4 80.0 823  56.0 75.1

QQP: Quora Question Pairs (detect paraphrase questions)

QNLI: natural language inference over question answering data
SST-2: sentiment analysis

STS-B: semantic textual similarity

o
o
o
® ColA: corpus of linguistic acceptability (detect whether sentences are grammatical.)
o
® MRPC: microsoft paraphrase corpus

o

RTE: a small natural language inference corpus
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Encoder: BERT Bidirectional Encoder [Devlin et al., 2018]

Representations from Transtormers
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[Devlin et al., 2018]

EnCOder- BERT Bidirectional Encoder

Representations from Transtormers

System Dev Test

ESIM+GloVe 51.9 52.7 e Two Sizes of Models
ESIM+ELMo 59.1 59.2
SWAG ;’;;“TAIGPT - 0 e Base: 110M, 4 Cloud TPUs, 4 days
(Commonsense BERTiara: 86.6_86.3 e Large: 340M, 16 Cloud TPUs, 4 days
inference task)  Human (expert)’ - 8.0 , ,
Human (5 annotations)’ - 88.0 ® Both models can be fine-tuned with

single GPU
® The larger the better!
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BERT Bidirectional Encoder [Devlin et al., 2018]

Representations from Transtormers

Encoder:

System Dev Test .
ESIM+GloVe 51.9 52.7 e Two Sizes of Models
ESIM+ELMo 59.1 59.2
SWAG ;’;:TAIGPT - 0 e Base: 110M, 4 Cloud TPUs, 4 days
(Commonsense BERTiara: 86.6_86.3 e Large: 340M, 16 Cloud TPUs, 4 days
inference task)  Human (expert)’ - 850 , ,
Human (5 annotations)’ - 88.0 ® Both models can be fine-tuned with

single GPU
® The larger the better!

5
<
- .
s ® MLM converges slower than Left-to-
= SN —TIV Right at the beginning, but out-
76 |- | > BERTpase (Left-to-Right) performers it eventually
200 400 600 300 1,000

Pre-training Steps (Thousands)
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EnCOder: ROBERTa Liu et al., 2019]

e Original BERT is significantly undertrained!

® More data (16G => 160QG)

® Pre-train for longer

® Bigger batches

® Removing the next sentence prediction (NSP) objective

® Training on longer sequences

® Dynamic masking, randomly masking out different tokens

® A larger byte-level BPE vocabulary containing 50K sub-word units
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EnCOder: ROBERTa Liu etal., 2019]

¢ Original BERT is significantly undertrained!
® More data (16G => 160Q)

® Pre-train for longer

All around better than BERT!

® Bigger batches
® Removing the next sentence prediction (NSP) objective

® Training on longer sequences

® Dynamic masking, randomly masking out different tokens

® A larger byte-level BPE vocabulary containing 50K sub-word units
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Encoders for Information Retrieval
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Encoders for Information Retrieval

Retrieve the set of relevant
documents given a query
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Encoders for Information Retrieval

Retrieve the set of relevant
documents given a query

Query
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Encoders for Information Retrieval

Retrieve the set of relevant
documents given a query

Query

Documents
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Encoders for Information Retrieval

Retrieve the set of relevant
documents given a query

- O

Query
lEmbed

Documents
q
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Encoders for Information Retrieval

Retrieve the set of relevant
documents given a query

\/\
Query
lEmbed Documents
g l Embed
(d,-.d}
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Encoders for Information Retrieval

Retrieve the set of relevant
documents given a query

Score document relevance by,

\/\ e.g., computing cosine
similarity between the query
Query and the document
lEmbe d relevance-score(d | g) = cos(q, cf)
Documents
é’ l Embed
{d19 ee dn}
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Encoders for Information Retrieval

Retrieve the set of relevant
documents given a query

Score document relevance by,

\/\ e.g., computing cosine
similarity between the query
Query and the document
lEmbe d relevance-score(d | g) = cos(q, cf)
Documents
é’ l Embed
{d19 ee dn}
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Encoders for Information Retrieval

_ Applications:
Retrieve the set of relevant e Search Engines (This is how
documents given a query google works!)
o Retrieval Augmented

Language Models

Score document relevance by,

\/\ e.g., computing cosine

similarity between the query

Query and the document
Embed relevance-score(d | g) = cos(q, cf)
l Documents | —
é’ l Embed
{d19 ee dn}

Natural Language Processing - CSE 447 / 547 M Pre-training



Encoders for Information Retrieval
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Encoders for Information Retrieval

How do we get sentence embeddings from an encoder-based model
like BERT?
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Encoders for Information Retrieval

How do we get sentence embeddings from an encoder-based model
like BERT?

Class
Label

Single Sentence
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Encoders for Information Retrieval

How do we get sentence embeddings from an encoder-based model
like BERT?

Class
Label

Option 1: Average learned word embeddings

Single Sentence
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Encoders for Information Retrieval

How do we get sentence embeddings from an encoder-based model
like BERT?

Option 1: Average learned word embeddings

Problem:
Representations not contextual!

Single Sentence Equivalent to using GloVe vectors
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Encoders for Information Retrieval

How do we get sentence embeddings from an encoder-based model
like BERT?

Class
Label

Option 2: Average learned contexual word
embeddings

Option 1: Average learned word embeddings

Problem:
Representations not contextual!

Single Sentence Equivalent to using GloVe vectors
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Encoders for Information Retrieval

How do we get sentence embeddings from an encoder-based model

like BERT?
Option 3: Use representations of CLS token for
Class sentence embedding

Label

Option 2: Average learned contexual word
embeddings

Option 1: Average learned word embeddings

Problem:
Representations not contextual!

Single Sentence Equivalent to using GloVe vectors
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Encoders for Information Retrieval

Single Sentence
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Encoders for Information Retrieval

Out of the box even contextual representations are not very good for

retrievall

Single Sentence
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Encoders for Information Retrieval

Out of the box even contextual representations are not very good for

retrievall

Single Sentence

Natural Language Processing - CSE 447 / 547 M

Model STS12 | STS13 | STS14 | STS15 | STS16 | STSb | SICK-R Avg.
Avg. GloVe embeddings 55.14 70.66 59.73 68.25 63.66 | 58.02 53.76 61.32
Avg. BERT embeddings 38.78 57.98 57.98 63.15 61.06 | 46.35 58.40 54.81
BERT CLS-vector 20.16 30.01 20.09 36.88 38.08 16.50 42.63 29.19
InferSent - Glove 52.86 66.75 62.15 72.77 66.87 | 68.03 65.65 65.01
Universal Sentence Encoder | 64.49 67.80 64.61 76.83 73.18 | 74.92 76.69 71.22

Spearman correlations for Textual Similarity (STS) tasks
(higher is better)

Pre-training




Encoders for Information Retrieval

Out of the box even contextual representations are not very good for

retrievall

Option
Option

Single Sentence
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Model STS12 | STS13 | STS14 | STS15 | STS16 | STSb | SICK-R Avg.
Avg. GloVe embeddings 55.14 70.66 59.73 68.25 63.66 | 58.02 53.76 61.32
2Avg. BERT embeddings 38.78 57.98 57.98 63.15 61.06 | 46.35 58.40 54.81
3BERT CLS-vector 20.16 30.01 20.09 36.88 38.08 16.50 42.63 29.19
InferSent - Glove 52.86 66.75 62.15 72.77 66.87 | 68.03 65.65 65.01
Universal Sentence Encoder | 64.49 67.80 64.61 76.83 73.18 | 74.92 76.69 71.22

Spearman correlations for Textual Similarity (STS) tasks
(higher is better)

Pre-training




Encoders for Information Retrieval

Out of the box even contextual representations are not very good for

retrievall

Option
Option

Single Sentence

Natural Language Processing - CSE 447 / 547 M

Model STS12 | STS13 | STS14 | STS15 | STS16 | STSb | SICK-R Avg.
Avg. GloVe embeddings 55.14 70.66 59.73 68.25 63.66 | 58.02 53.76 61.32
2Avg. BERT embeddings 38.78 57.98 57.98 63.15 61.06 | 46.35 58.40 54.81
3BERT CLS-vector 20.16 30.01 20.09 36.88 38.08 16.50 42.63 29.19
InferSent - Glove 52.86 66.75 62.15 72.77 66.87 | 68.03 65.65 65.01
Universal Sentence Encoder | 64.49 67.80 64.61 76.83 73.18 | 74.92 76.69 71.22

Spearman correlations for Textual Similarity (STS) tasks
(higher is better)

Pre-training




Encoders for Information Retrieval

Out of the box even contextual representations are not very good for

retrievall

Single Sentence

Option
Option

Natural Language Processing - CSE 447 / 547 M

Performance is even
worse than averaging word

embeddings!

Model STS12 | STS13 | STS14 | STS15 | STS16 | STSb .

Avg. GloVe embeddings 55.14 70.66 59.73 68.25 63.66 | 58.02 53.°78 61.32
2Avg. BERT embeddings 38.78 57.98 57.98 63.15 61.06 | 46.35 58.40 54.81
3BERT CLS-vector 20.16 30.01 20.09 36.88 38.08 16.50 42.63 29.19

InferSent - Glove 52.86 66.75 62.15 72.77 66.87 | 68.03 65.65 65.01

Universal Sentence Encoder | 64.49 67.80 64.61 76.83 73.18 | 74.92 76.69 71.22

Spearman correlations for Textual Similarity (STS) tasks
(higher is better)

Pre-training




Encoders for Information Retrieval

Out of the box even contextual representations are not very good for

retrievall

Single Sentence

Option
Option

Natural Language Processing - CSE 447 / 547 M

Performance is even
worse than averaging word

embeddings!

ode STS12 | STS13 | STS14 | STS1S | STS16 | STSb :

Avg. GloVe embeddings 55.14 70.66 59.73 68.25 63.66 | 58.02 53.°78 61.32
2Avg. BERT embeddings 38.78 57.98 57.98 63.15 61.06 | 46.35 58.40 54.81
3BERT CLS-vector 20.16 30.01 20.09 36.88 38.08 | 16.50 42.63 29.19

InferSent - Glove 52.86 66.75 62.15 72.77 66.87 | 68.03 65.65 65.01

Universal Sentence Encoder | 64.49 67.80 64.61 76.83 73.18 | 74.92 76.69 71.22

Spearman correlations for Textual Similarity (STS) tasks
(higher is better)

Pre-training




Encoders for Information Retrieval

Out of the box even contextual representations are not very good for

retrievall Why?

Pre-training objective unlike for

word2vec is not aligned with the objective of

placing similar sentences closer in

embedding space

oae

Performance is even
worse than averaging word

embeddings!

STS12

STS13

STS14

STS15

STS16

STSb

Avg. GloVe embeddings 55.14 70.66 59.73 68.25 63.66 | 58.02 53.°78 61.32
O ption 2Avg. BERT embeddings 38.78 57.98 57.98 63.15 61.06 | 46.35 58.40 54.81
O ptio N ISBERT CLS-vector 20.16 30.01 20.09 36.88 38.08 16.50 42.63 29.19
InferSent - Glove 52.86 66.75 62.15 72.77 66.87 | 68.03 65.65 65.01
Universal Sentence Encoder | 64.49 67.80 64.61 76.83 73.18 | 74.92 76.69 71.22

Single Sentence
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(higher is better)

Spearman correlations for Textual Similarity (STS) tasks

Pre-training




Encoders for Information Retrieval: Sentence BERT (S-
BERT)
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Encoders for Information Retrieval: Sentence BERT (S-
BERT)

® Finetune BERT / RoBERTa to learn sentence
level representations such that similar
sentences are located closer in the
embedding space
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Encoders for Information Retrieval: Sentence BERT (S-

® Finetune BERT / RoBERTa to learn sentence -1;1
level representations such that similar cosine-sim(u, v

. S/N

sentences are located closer in the ' Vb

embedding space £ £
pooling pooling

3 3

BERT BERT

i ;
Sentence A Sentence B
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Encoders for Information Retrieval: Sentence BERT (S-

® Finetune BERT / RoBERTa to learn sentence -1;1
level representations such that similar cosine-sim(u, v
sentences are located closer in the Sﬁ/w\svb
embedding space £ £

pooling pooling
3 3
. . . . . BERT BERT
® Uses a triplet objective tunction — Given an f f

Sentence A Sentence B

anchor sentence a, a positive sentence p, ana
a negative sentence n, triplet loss tunes the
network such that the distance between a and

p is smaller than the distance between a and n.
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Encoders for Information Retrieval: Sentence BERT (S-

BERT)

® Finetune BERT / RoBERTa to learn sentence e
level representations such that similar cosine-sim(u, v
sentences are located closer in the Si/"\svb
embedding space o o

3 3

® Uses a triplet objective tunction — Given an Se:{;;\ SG::E;B
anchor sentence a, a positive sentence p, ana
a negative sentence n, triplet loss tunes the Triplet objective function
network such that the distance between a and max(fls, = spll = llsa = s,ll +€.0)

p is smaller than the distance between a and n.
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Encoders for Information Retrieval: Sentence BERT (S-
BERT)
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Encoders for Information Retrieval: Sentence BERT (S-

BERT)

Model STS12 | STS13 | STS14 | STS1S | STS16 | STSb | SICK-R || Avg.
Avg. GloVe embeddings 55.14 70.66 59.73 68.25 63.66 | 58.02 53.76 61.32
Avg. BERT embeddings 38.78 57.98 57.98 63.15 61.06 | 46.35 58.40 54.81
BERT CLS-vector 20.16 30.01 20.09 36.88 38.08 | 16.50 42.63 29.19
InferSent - Glove 52.86 66.75 62.15 72.77 66.87 | 68.03 65.65 65.01
Universal Sentence Encoder | 64.49 67.80 64.61 76.83 73.18 | 74.92 76.69 71.22
SBERT-NLI-base 70.97 76.53 73.19 79.09 74.30 | 77.03 72.91 74.89
SBERT-NLI-large 72.27 78.46 | 74.90 80.99 76.25 | 79.23 73.75 76.55
SRoBERTa-NLI-base 71.54 72.49 70.80 | 78.74 | 73.69 | 717.77 74.46 74.21
SRoBERTa-NLI-large 74.53 77.00 73.18 81.85 76.82 | 79.10 74.29 76.68

Spearman correlations for Textual Similarity (STS) tasks
(higher is better)
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Encoders for Information Retrieval: Sentence BERT (S-

BERT)

Model STS12 | STS13 | STS14 | STS1S | STS16 | STSb | SICK-R || Avg.
Avg. GloVe embeddings 55.14 70.66 59.73 68.25 63.66 | 58.02 53.76 61.32
Avg. BERT embeddings 38.78 57.98 57.98 63.15 61.06 | 46.35 58.40 54.81
BERT CLS-vector 20.16 30.01 20.09 36.88 38.08 | 16.50 42.63 29.19
InferSent - Glove 52.86 66.75 62.15 72.77 66.87 | 68.03 65.65 65.01
SBERT-NLI-base 70.97 76.53 73.19 79.09 74.30 | 77.03 72.91 74.89
SBERT-NLI-large 72.27 78.46 | 74.90 80.99 76.25 | 79.23 73.75 76.55
SRoBERTa-NLI-base 71.54 72.49 70.80 | 78.74 | 73.69 | 77.77 74.46 74.21
SRoBERTa-NLI-large 74.53 77.00 73.18 81.85 76.82 | 79.10 74.29 76.68

Spearman correlations for Textual Similarity (STS) tasks
(higher is better)
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Encoders for Information Retrieval: Sentence BERT (S-

BERT)

Model STS12 | STS13 | STS14 | STS1S | STS16 | STSb | SICK-R || Avg.
Avg. GloVe embeddings 55.14 70.66 59.73 68.25 63.66 | 58.02 53.76 61.32
Avg. BERT embeddings 38.78 57.98 57.98 63.15 61.06 | 46.35 58.40 54.81
BERT CLS-vector 20.16 30.01 20.09 36.88 38.08 | 16.50 42.63 29.19
InferSent - Glove 52.86 66.75 62.15 72.77 66.87 | 68.03 65.65 65.01
SBERT-NLI-base 70.97 76.53 73.19 79.09 74.30 | 77.03 72.91 74.89
SBERT-NLI-large 72.27 78.46 | 74.90 80.99 76.25 | 79.23 73.75 76.55
SRoBERTa-NLI-base 71.54 72.49 70.80 | 78.74 | 73.69 | 77.77 74.46 74.21
SRoBERTa-NLI-large 74.53 77.00 | 73.18 81.85 76.82 | 79.10 74.29 76.68

Spearman correlations for Textual Similarity (STS) tasks
(higher is better)
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Encoders for Information Retrieval: Sentence BERT (S-

BERT)

v

SBERT net

Very handy for using pre-

trained Sentence-BERT-like

Sentence Transformers Library.

models
Model STS12 | STS13 | STS14 | STS1S | STS16 | STSb | SICK-R || Avg.
Avg. GloVe embeddings 55.14 | 70.66 | 59.73 68.25 63.66 | 58.02 53.76 61.32
Avg. BERT embeddings 38.78 57.98 57.98 63.15 61.06 | 46.35 58.40 54.81
BERT CLS-vector 20.16 30.01 20.09 | 36.88 38.08 | 16.50 42.63 29.19
InferSent - Glove 52.86 66.75 62.15 | 72.77 66.87 | 68.03 65.65 65.01
SBERT-NLI-base 70.97 76.53 73.19 | 79.09 | 74.30 | 77.03 72.91 74.89
SBERT-NLI-large 72.27 7846 | 7490 | 8099 | 76.25 | 79.23 73.75 76.55
SRoBERTa-NLI-base 71.54 | 7249 | 7080 | 78.74 | 73.69 | 77.77 74.46 74.21
SRoBERTa-NLI-large 74.53 77.00 | 73.18 8185 | 76.82 | 79.10 74.29 76.68

Spearman correlations for Textual Similarity (STS) tasks
(higher is better)
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Encoder: Pros & Cons

® Consider both left and right context
® Capture intricate contextual relationships
o e Not good at generating open-text from left-to-

right, one token at a time

make/brew/craft goes to make tasty tea END
1 t t t t t

A

Iroh goes to [M] tasty tea Iroh goes to make tasty tea
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Thank you!
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