Self Attention and Transformers

Vidhisha Balachandran

vidhishab@microsoft.com

Readings

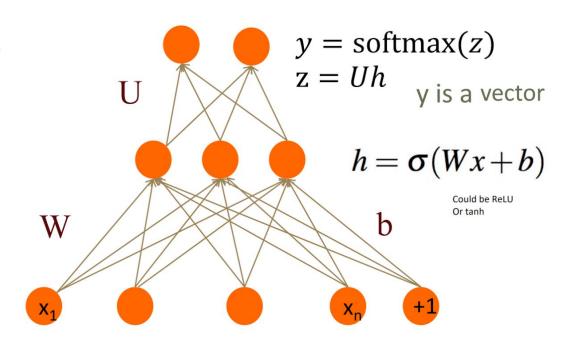
- Attention Is All You Need
- The Illustrated Transformer
- The Annotated Transformer
- Language Modeling with Transformers and PyTorch

Recap - 2 Layer MLP

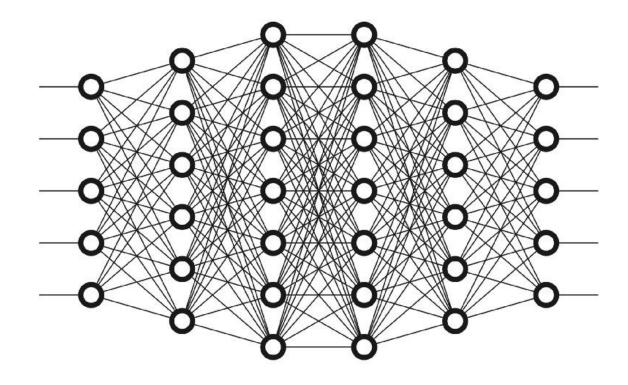
Output layer (σ node)

hidden units $(\sigma \text{ node})$

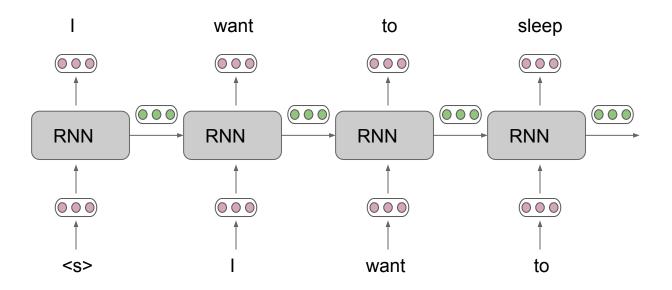
Input layer (vector)



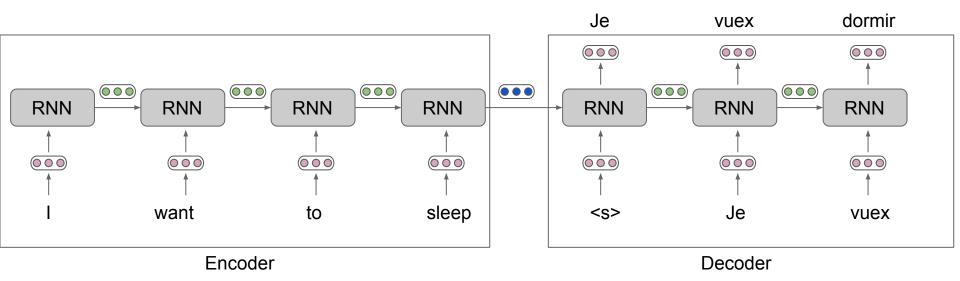
Deep MLP



Recurrent Neural Networks - RNNs



Encoder-Decoder Models



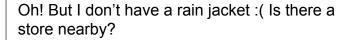
Limitations

- Long Range Dependencies
- Gradient vanishing / explosion
- Long time to converge
- Expensive computation

Long Range Dependencies

I'm want to watch Wicked! How does the weather in NYC look next week?

It looks sunny with some light rain during the weekend.

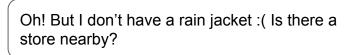


There's a marshall's a mile away. They have the navy blue jacket you have been eyeing for a while!

Long Range Dependencies

I'm want to watch Wicked! How does the weather in NYC look next week?

It looks sunny with some light rain during the weekend.

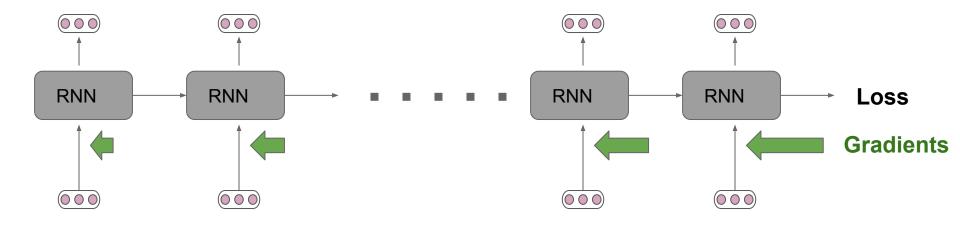


There's a marshall's a mile away. They have the navy blue jacket you have been eyeing for a while!

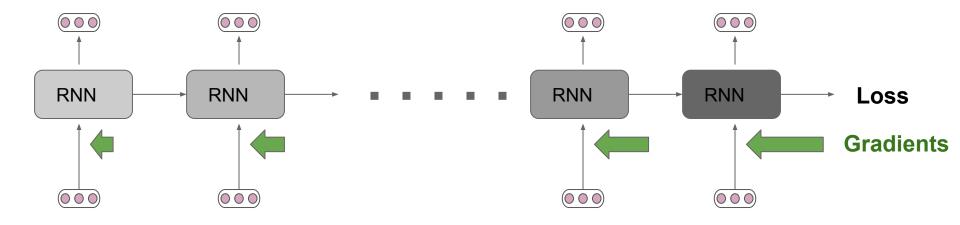
Ok! Looks like I can actually go! Book the tickets for next Wed!

Long Range Dependencies

Gradient vanishing / explosion



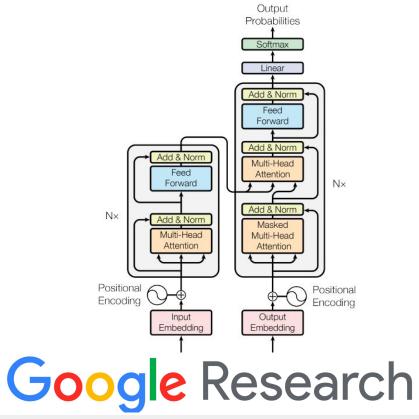
Gradient vanishing / explosion



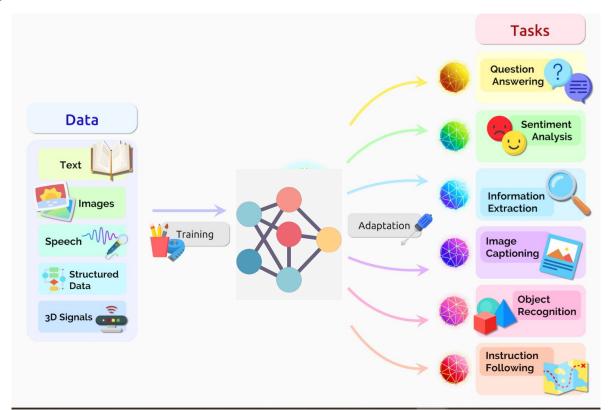
Limitations

- Long Range Dependencies
- Gradient vanishing / explosion
- Long time to converge
- Expensive computation

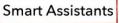
Transformer Model



Wide Applications



Real World Impact

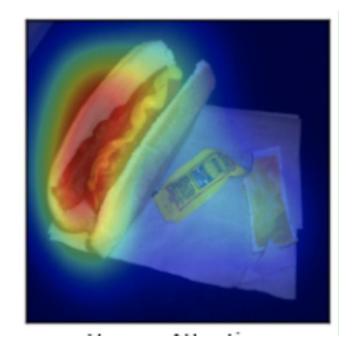


and many more

Questions?

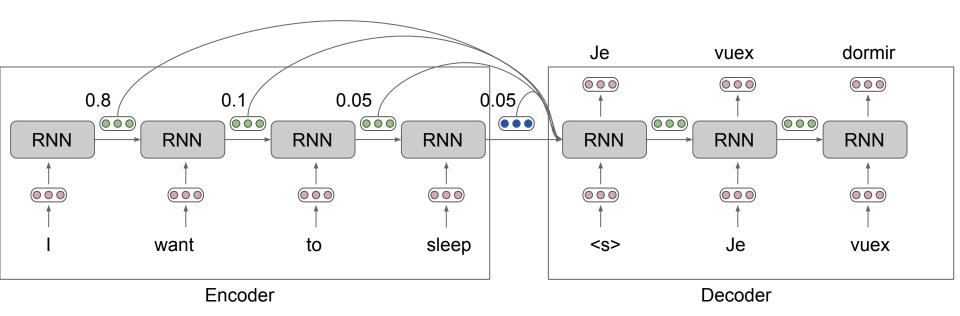
Visual Attention

What toppings are on the hot dog?

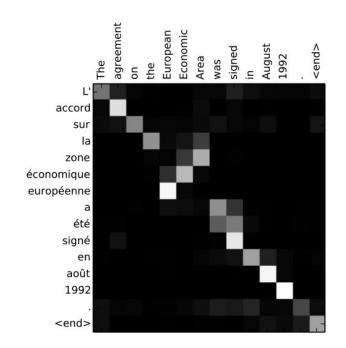


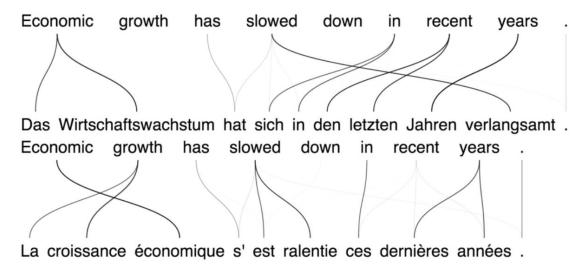
Differential Attention for Visual Question Answering (Patro et.al, 2018)

Cross Attention in NMT



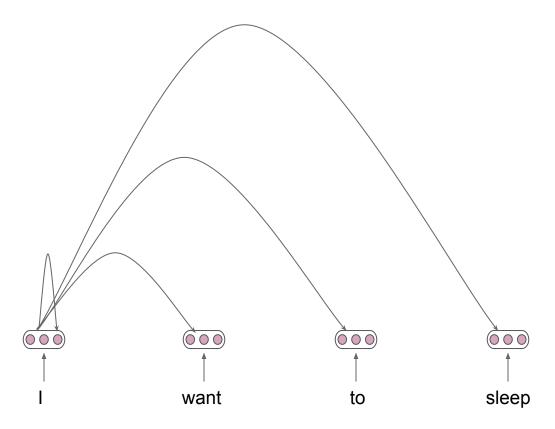
Attention in NMT



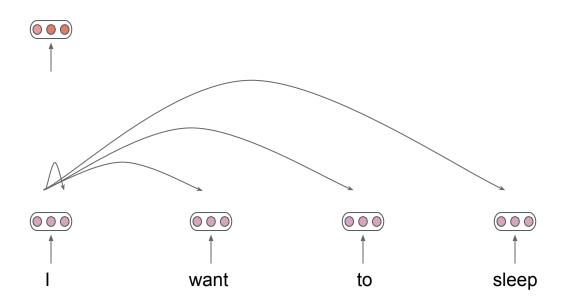


Neural Machine Translation by Jointly Learning to Align and Translate. Bahdanau et al, 2015 https://developer.nvidia.com/blog/introduction-neural-machine-translation-gpus-part-3/

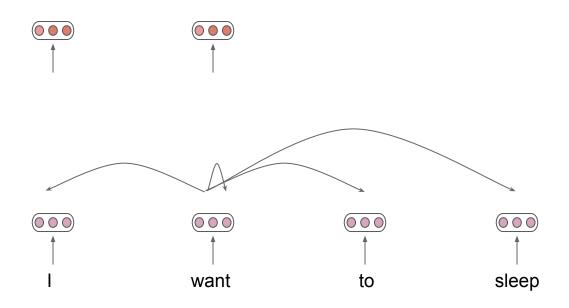
Self Attention



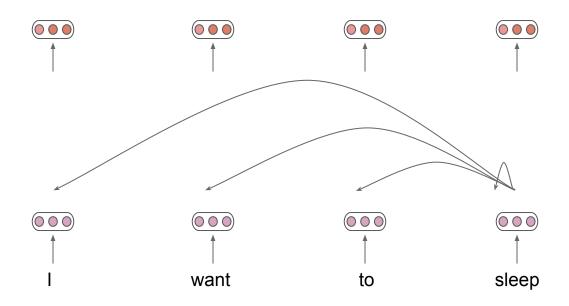
Self Attention - No more recurrence



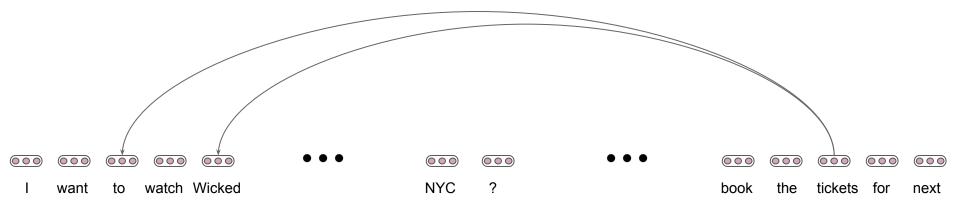
Self Attention - No more recurrence



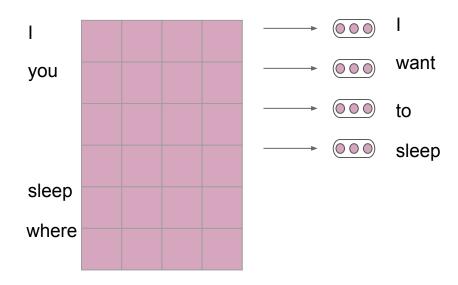
Self Attention - No more recurrence

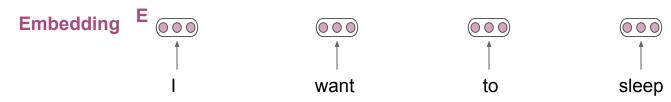


Self Attention for long sequences

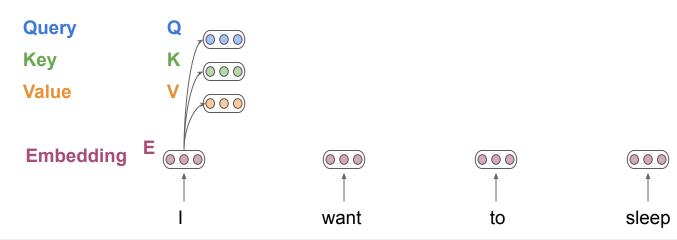


Self Attention - Word Embedding

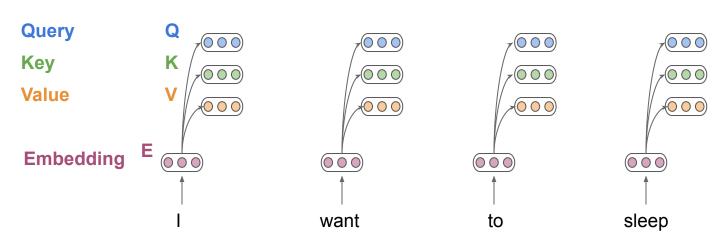




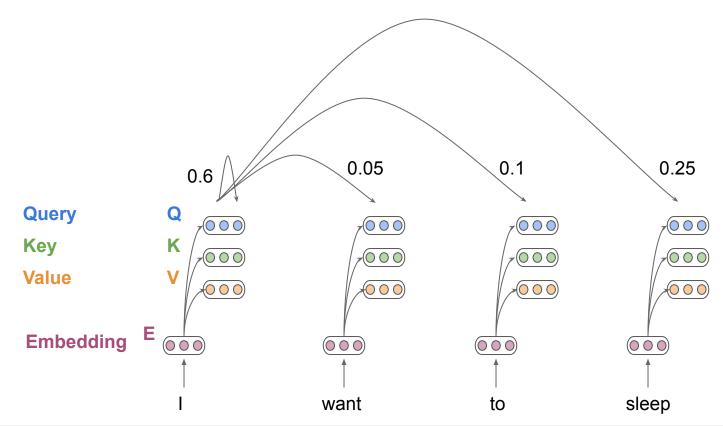
Self Attention - Projection Layer



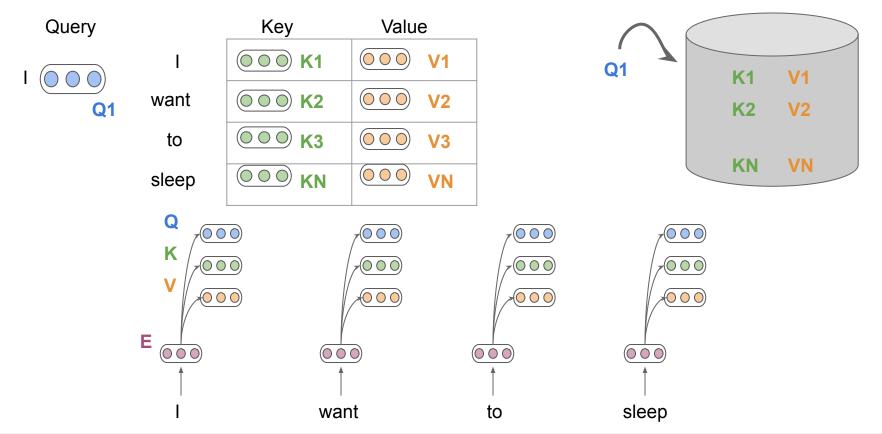
Self Attention - Projection Layer



Self Attention - Attention Scores

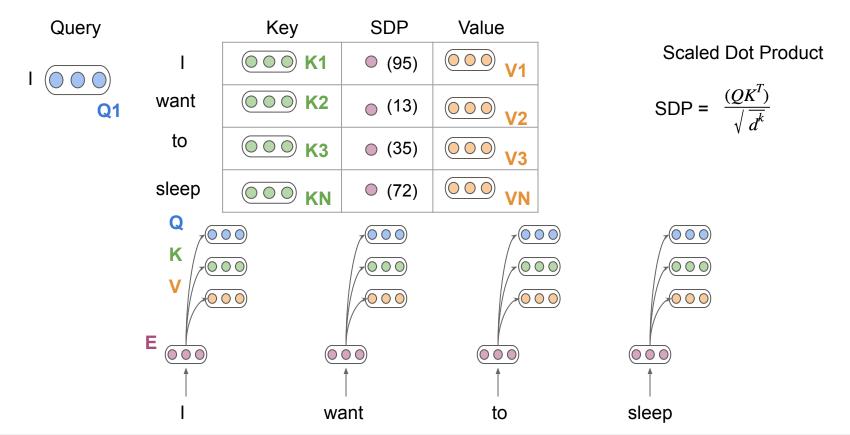


Self Attention

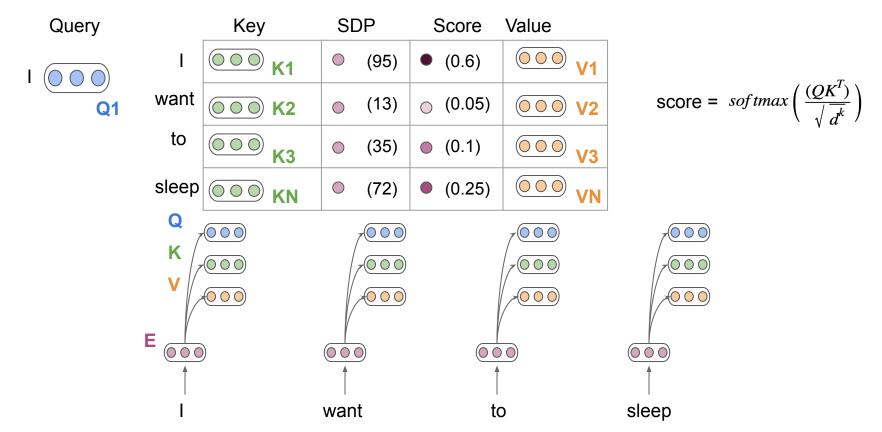


Questions?

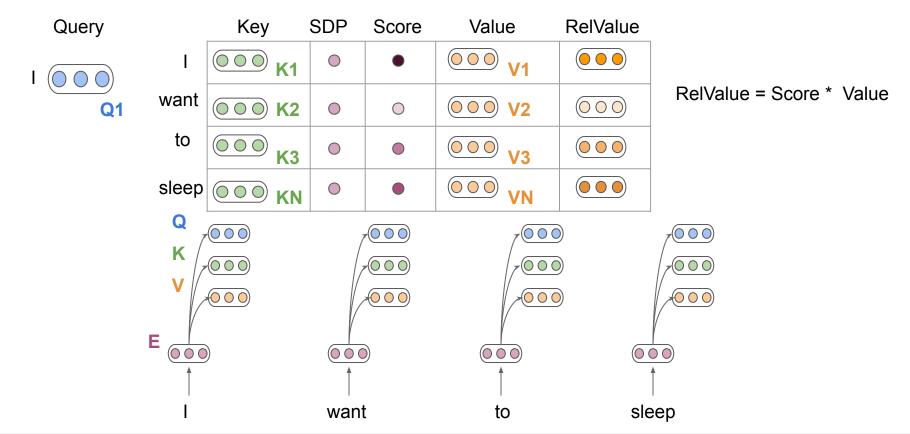
Self Attention - Scaled Dot Product



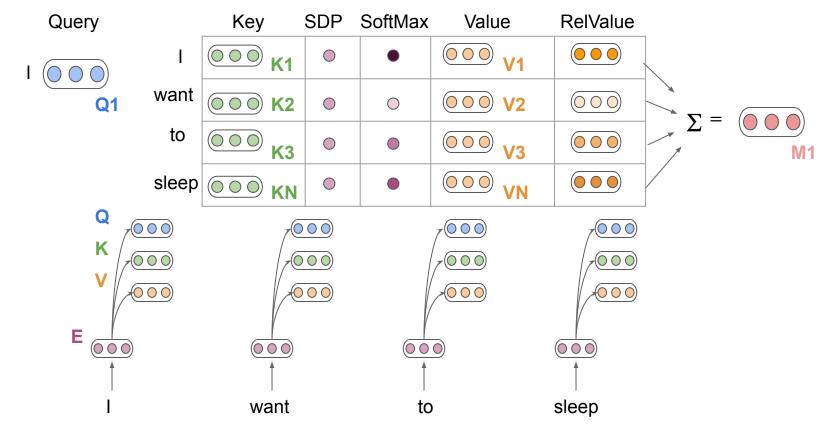
Self Attention - SoftMax



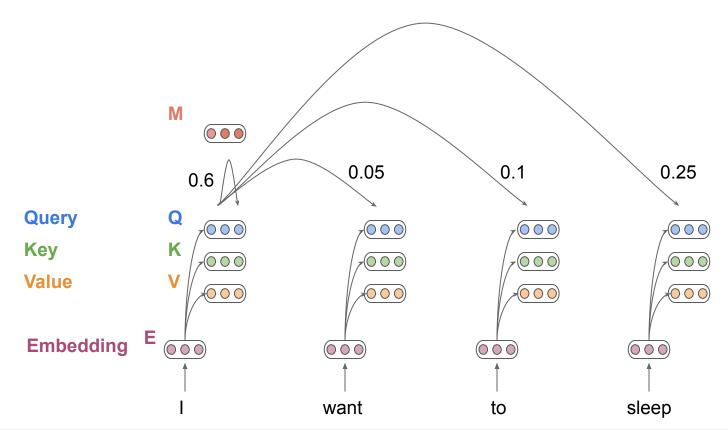
Self Attention - Soft (Relative) Values



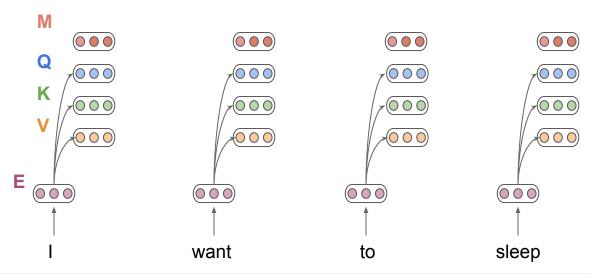
Self Attention - Attended Repr



Self Attention - Attended Contextual Rep



Self Attention - Attended Contextual Rep



Questions?

Problem with Self Attention

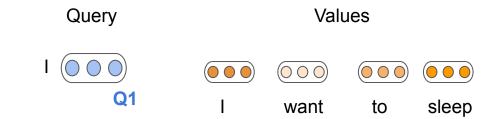
Self Attention can focus heavily on the same word!

Query Values

I Q1 I want to sleep

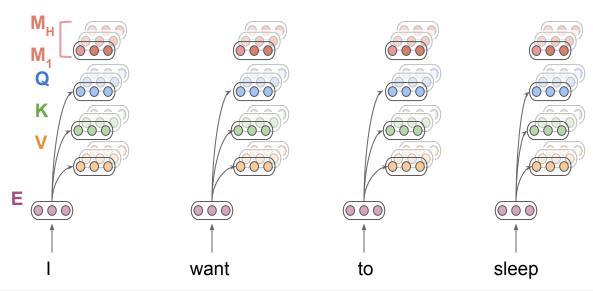
Problem with Self Attention

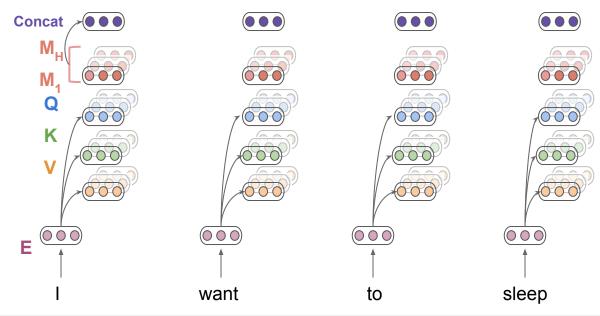
Self Attention can focus heavily on the same word!

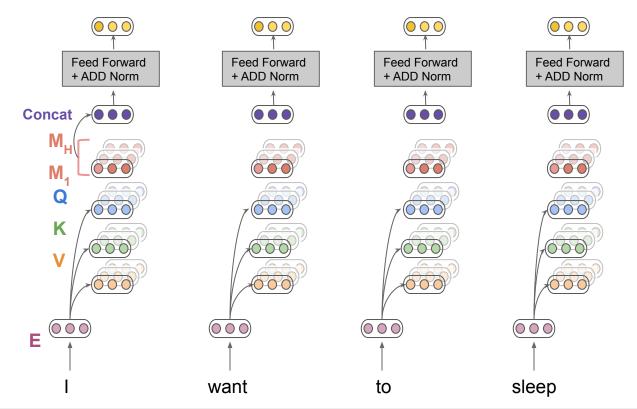


Single representation

H (no: of heads) Different versions of Q,K,V Each different repr -> Different attended repr

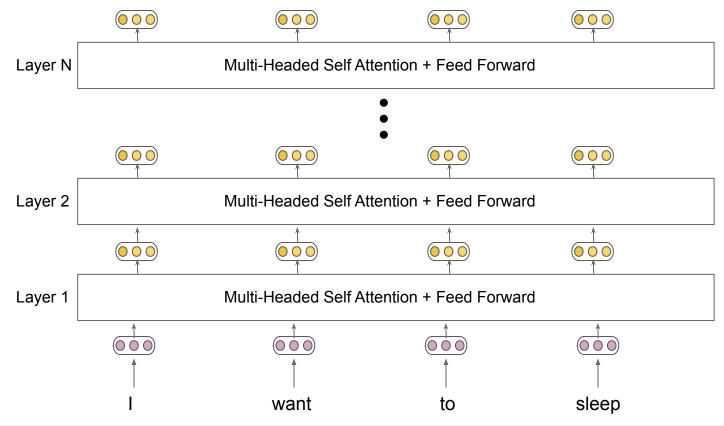




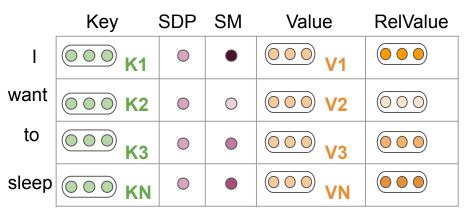


 $(\bigcirc \bigcirc \bigcirc)$ $(\bigcirc \bigcirc \bigcirc)$ $(\bigcirc \bigcirc \bigcirc)$ $(\bigcirc \bigcirc \bigcirc)$ Feed Forward Feed Forward Feed Forward Feed Forward + ADD Norm + ADD Norm + ADD Norm + ADD Norm Concat Multi-Headed Self Attention + Feed Forward K (000) $(\bigcirc \bigcirc \bigcirc)$ $(\bigcirc \bigcirc \bigcirc)$ want to sleep

Transformers and Self-Attention

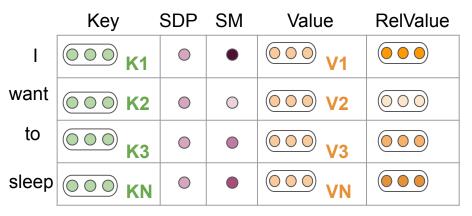


Questions?



$$\Sigma = \bigcirc \bigcirc \bigcirc \bigcirc$$

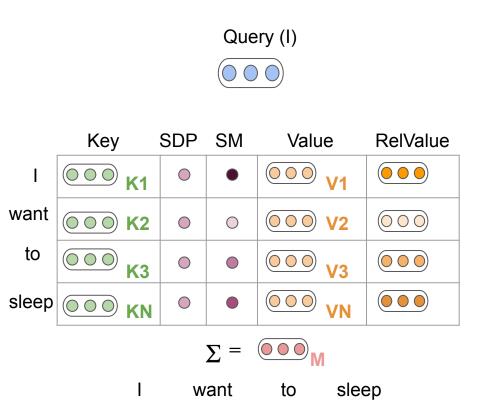
I want to sleep



$$\Sigma = \bigcirc \bigcirc \bigcirc$$

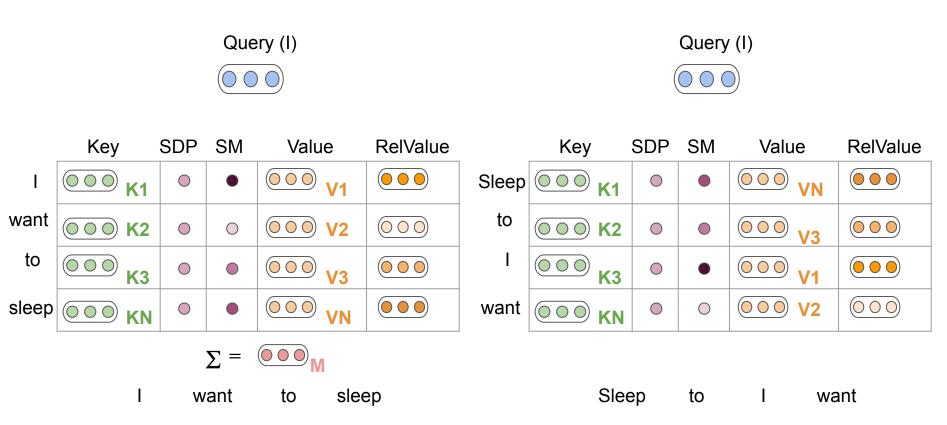
I want to sleep

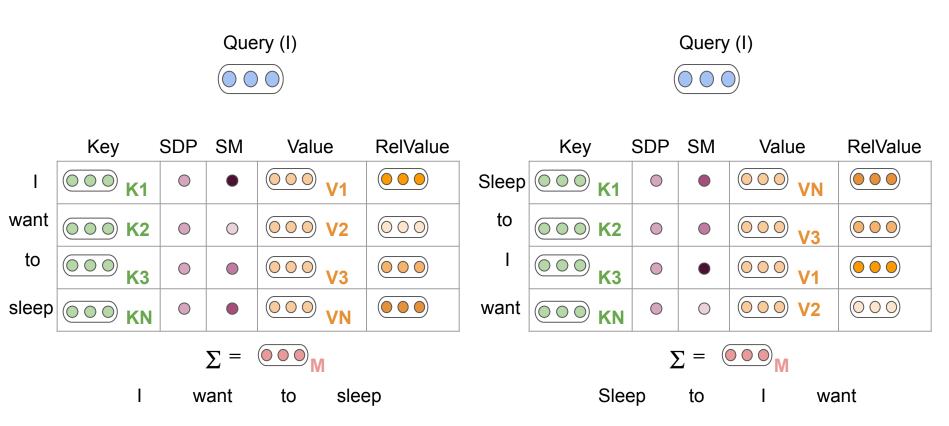
Sleep to I want

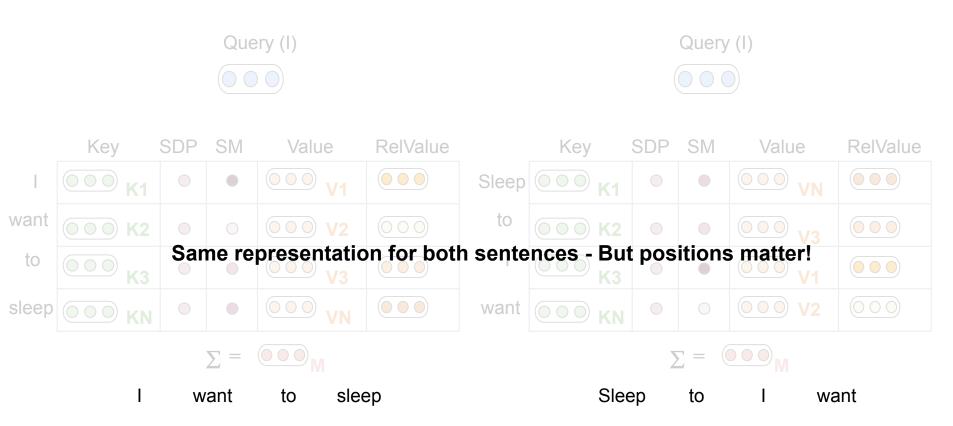


Query (I)

Sleep to I want

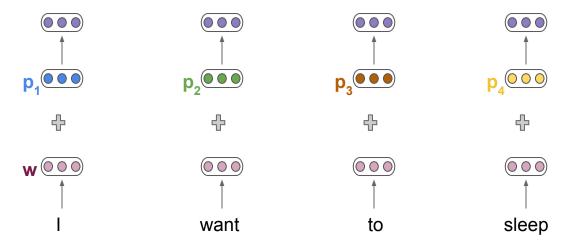






Positional Encoding

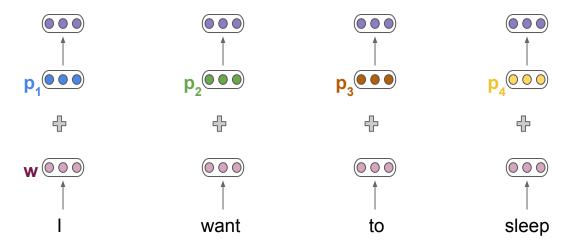
Position embeddings - each position number has an associated embedding



Positional Encoding

Sinusoidal Position embeddings - generalize to any sequence length

$$p = f(i, t)$$



Questions?

Transformer Encoder

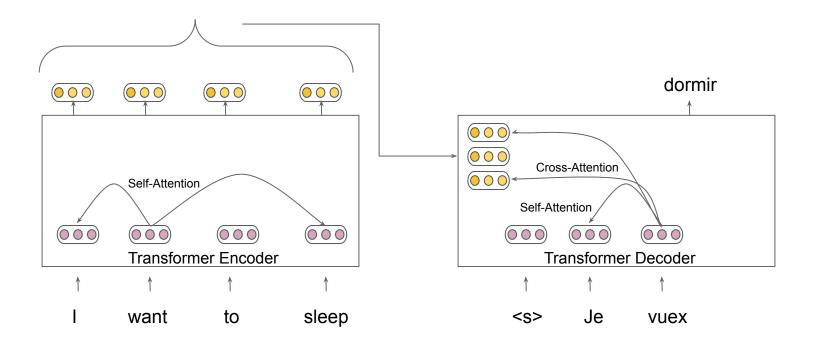
 \bigcirc \bigcirc $(\bigcirc \bigcirc \bigcirc)$ Layer N Multi-Headed Self Attention + Feed Forward $(\bigcirc \bigcirc \bigcirc)$ $(\bigcirc\bigcirc\bigcirc$ Layer 2 Multi-Headed Self Attention + Feed Forward $(\bigcirc\bigcirc\bigcirc)$ $(\bigcirc\bigcirc\bigcirc)$ $(\bigcirc\bigcirc\bigcirc)$ Layer 1 Multi-Headed Self Attention + Feed Forward sleep

want

N-Layer Transformer Encoder

to

Transformer Encoder - Decoder

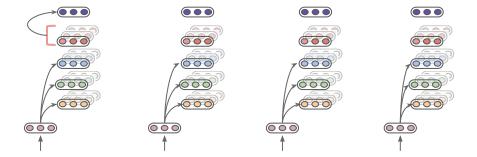


What's so great about Transformers?

- Parallelizable computation
 - Entire sequence, All queries, all attention heads computed in parallel
 - Benefits from fast matrix multiplication on GPUs
- Rich expressive power
 - Every token connected to every other token
 - Can form long range dependencies
- Depth not proportional to seq length
 - Reduces exploding/vanishing gradient problem
 - Converges faster

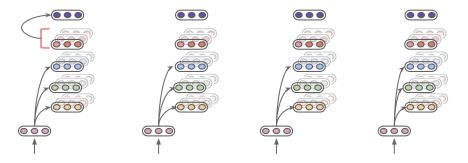
What's so great about Transformers?

Parallelizable computation - Entire sequence can be processed in parallel

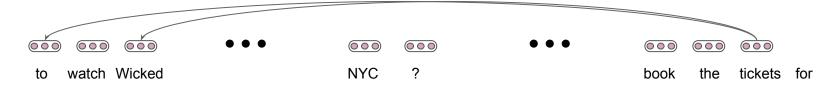


What's so great about Transformers?

Parallelizable computation - Entire sequence can be processed in parallel

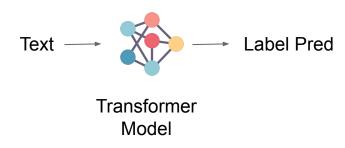


• Rich expressive power - long range dependencies



Impact - Wide Applications!

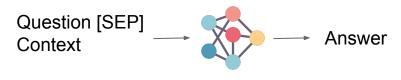
Classification



Sentence Similarity

Transformer Model

Question Answering



Transformer Model

Translation

Transformer Encoder - Decoder

Impact - Wide Applications!

Captioning

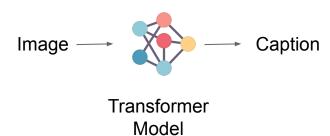


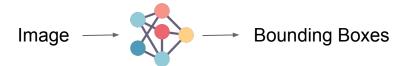
Image Classification

Transformer Model

Visual Question Answering

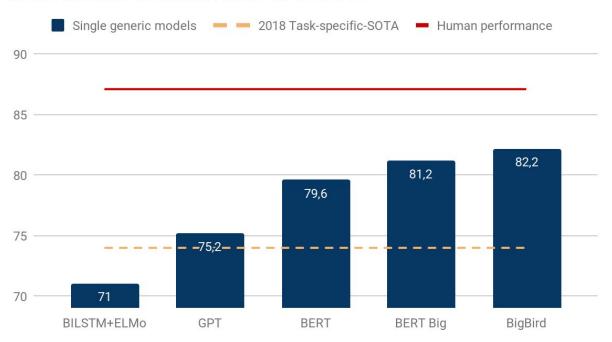
Transformer Model

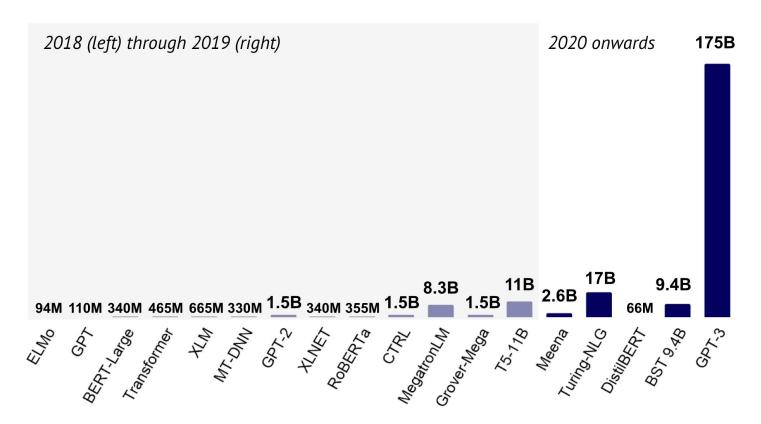
Object Detection

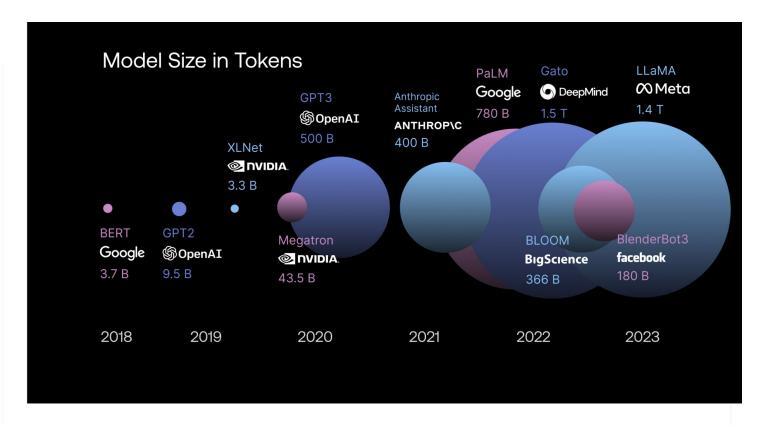


Transformer Model

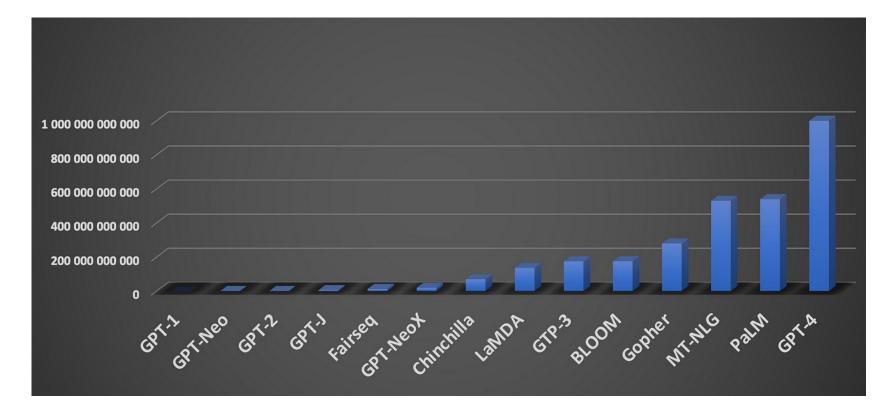
GLUE scores evolution over 2018-2019

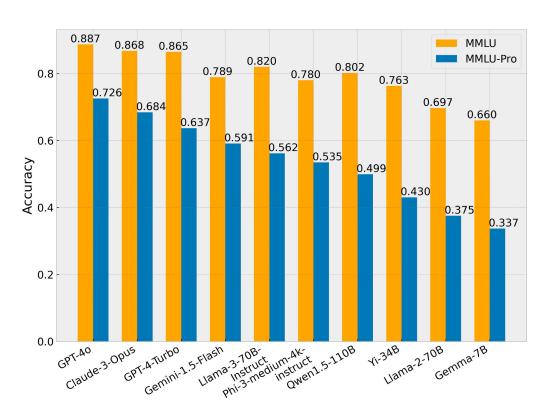






66





AI will revolutionise research. But could it transform science altogether?

Announcing Microsoft Copilot, your everyday Al companion

More schools want your kids to use ChatGPT. Really.

Education leaders are embracing technology that set off a plagiarism panic just months ago.

How will leveraging AI change the future of legal services?



GPT-4's potential in shaping the future of radiology

NYU Langone Health LLM can predict hospital readmissions

The Verge

Bing, Bard, and ChatGPT: How AI is rewriting the internet

Thank you!

vidhishab@microsoft.com

Results/Impact

- Improves results, Establishes SOTA in various tasks!
 - Machine Translation
 - Constituency Parsing
 - Language Modeling
 - and more!
- Computationally faster!
 - No sequential computation Entire sequence processed in parallel